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Zusammenfassung

Musik spielt eine wichtige Rolle im privaten und sozialen Leben des modernen Menschen.
Dies involviert das Fachsimpeln iiber Musik und die gemeinsame, explorative Suche nach
geeigneter Musik fiir einen bestimmten Anlass oder eine bestimmte Stimmung. Herk6mm-
liche Systeme zur Verwaltung und Durchforstung von Kollektionen digitaler Musik sind
zur Unterstiizung dieser Tétigkeiten ungeeignet.

Deshalb prisentieren wir in dieser Arbeit das fiir Tabletop Displays bestimmte Soft-
waresystem ,AudioPhield“. AudioPhield stellt die einzelnen Songs aus den Sammlungen
verschiedener Benutzer gleichzeitig auf einer Starfield-artigen Benutzeroberfliche dar. Da-
bei sollen Stiicke, die als dhnlich wahrgenommen werden, auch nah beieinander platziert
werden.

Der Fokus der Arbeit liegt auf der Visualisierung der Musiksammlungen und der Ent-
wicklung geeigneter Interaktionsformen, die es mehreren Benutzern erlauben, das System
gemeinsam zu bedienen. Dazu werden Aspekte gemeinsamen Musikkonsums vorgestellt,
die als Grundlage und Motivation fiir die Gestaltung der Benutzerschnittstelle in den dar-
auf folgenden Kapiteln dient. Eine abschliekende Nutzerstudie soll letztlich zeigen, ob und
wieweit die genannten Ziele erreicht wurden.

Abstract

Music plays an important role in the private and social life of today’s individuals. This
involves in-depth discussions about music and collaborative and exploring searching for
music that fits a certain occasion or mood. Conventional systems for maintaining and
accessing collections of digital music are inept to support such activities.

Therefore, we present in this thesis the software system “AudioPhield”, which is targeted
on tabletop displays. AudioPhield depicts the individual songs from collections of different
users simultaneously on a starfield-like user interface. Songs, which are perceived as similar,
shall thereby be placed close to each other.

The focus of this work lies on visualizing music libraries and developing suitable forms
of interaction to enable multiple users to operate the system simultaneously. Therefore,
aspects of social music consumptions are presented, which serve as basis and motivation
for the design of the interface in the following chapters. A concluding user study shall
reveal if, and to what extent, these goals were reached.



Aufgabenstellung

Currently available software for interacting with digital music libraries does not support
casual browsing particularly. Furthermore, these programs are limited to a single user at
a time; they lack especially functions to support collaborative, simultaneous browsing.

A system is to be developed that resolves the above outlined deficiencies with a novel
user interface targeted on a multi-touch tabletop display. Thus, collaborative, casual
browsing of digital music libraries is to be supported.

General solution approach: Songs in music libraries are represented as icons on a two-
dimensional surface. The icon layout visualizes similarity relations between songs.
The task consists of three core challenges:

1. Similarity data needs to be extracted from the music.
2. Visualizations for music libraries need to be designed.

3. Schemes for collaborative interaction on a tabletop device need to be elaborated.
These should make extensive use of the capabilities of the multi-touch device.

The student has to find solutions to these problems. The found solutions must be
integrated into a single, consistent design of a user interface. This interface is to be imple-
mented in form of a fully functional prototype. The student is also required to conduct a
user study to evaluate the validity of the found solution.

Ich erklire hiermit, dass ich die vorliegende Arbeit selbststindig angefertigt, alle Zitate als
solche kenntlich gemacht sowie alle benutzten Quellen und Hilfsmittel angegeben habe.

Miinchen, 16. September 2008
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1 Introduction

Music is an integral part of our everyday life. Many of our daily activities are accompanied
by some sort of music: We wake up to an (hopefully) pleasant tune from the radio clock
and listen to music from the car stereo or iPod during transport to work. If we enter a
shopping mall, we are exposed to different kinds of ambient music whenever we enter a
shop. Music makes us work harder during exercise sessions or helps us to relax after a long
day as live music in a pub or a classical concert from the hi-fi system in the living room.
And to close the circle, with lullabies there is even music made for going to bed. For many
people, this mounts up to over six hours a day [68]!

Why this omnipresence? It is not just that music consists of “special kinds of sounds
that tickle [the human sound-processing capabilities| in interesting ways” as described in
[74, page 14], music is directly linked to our emotions'. So, we choose music to match our
current mood. But music is also capable of altering our mood. Shops utilize this connection
by playing music that is supposed to uplift the spirits of their shoppers and, ultimately,
encourage them to buy more. However, we use this connection frequently ourselves, for
instance if we create playlists for a party or a romantic evening. Therefore, it is important
that we choose the “right” music for the occasion - working out to restrained lounge music
seems just impossible.

Considering this emotional power, it is no surprise that music has also some very
important cultural and social aspects: We define who we are and who belongs to us by
music (of course not exclusively, but among other factors like language or clothing). This
reaches from national anthems to the music styles specific to a youth subculture (e.g.,
hip-hop, punk) to the song a couple chose as “our song” (which is often the song, they first
performed another activity based on music to: dance). Based on one’s cultural heritage
there are also occasions which outright demand certain music: For example, to many
people in the Western culture, a wedding is not really a complete wedding without the
wedding march. But already listening to music together and rummaging in each others
music collection is a deeply social and socializing activity.

Considering that a growing part of personal music libraries is nowadays stored in digital
file formats like the ever popular “mp3” or Apple’s “aac”’, common music organization
and playback software as “WinAmp” (|@23])? or “iTunes” (|@2]) offers surprisingly little
support for the above mentioned tasks, namely the casual, non-targeted browsing of entire
collections, possibly together with other people. They traditionally offer just long® lists in
which every song is represented as a line containing artist, title and album information.
Even with the addition of features as ratings or logging how often or recent a song was
played, these systems can not assist in queries of the type “Find me a work-out song” or
“Give me a good overview of my friend’s collection”. Especially the social aspect seems to
find only attention if the users are at least in different rooms.

This may be due to the computer systems they were developed for: Desktop PCs.
This hardware is designed to let one person effectively interact, but performs poor when
it comes to multiple users in the same place at the same time. The reason for that is, on
the one hand, that only one person can interact with the system at a time because there
is usually only one set of interaction devices, such as mouses or keyboards. On the other

!This relation is arguably known to mankind since the Stone Age and was already studied soundly by
Hevner in 1936, see [34]

2Sources marked as [@**] refer to content accessed via the Internet. They are enlisted in the “Web
References” section at the end of this document.

3Since it is not unusual for private music collections to contain more than 5,000 songs, these lists can
even become unmanageable long.
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hand, the usual setup forces the users with a vertically mounted, rather small display to sit
side-by-side; this design handicaps natural interaction and conversation, which commonly
takes place in a face-to-face setting [76].

1.1 Tabletop displays: Hardware designed to aid collaboration

With the arrival of direct-touch tabletop displays, there now exists a new platform that
allows users to be located face-to-face while operating the system. Thus, it is especially
suited to support collaboration and social interaction of multiple users better than any
other known computing environment [69]. The following section shall outline the develop-
ment and major systems of this technology.

One of the earliest approaches for a tabletop device is the “Video Desk” by Krueger,
which was introduced already in 1983. This system was vision based and enabled thus
interaction methods that resemble today’s direct-touch approaches — albeit there was no
actual touch recognition ([48]). Later systems in the beginning of the 1990s used primarily
projectors to create the tabletop displays but still relied on vision-based tracking of
fingers or hands for input recognition. Important examples of systems belonging to his
category are the “Digital Desk” by Wellner ([93]), or the “Everywhere Displays Projector”
developed at IBM research ([@26]). These systems already include special modes for
multi-user interaction. Later, new technologies to recognize user input were developed.
The “DiamondTable” from Dietz and Leigh ([25]) introduced the usage of capacitive
sensors for this purpose. This technology not only enables multi-point tracking but also
relates input points and users reliably — at least, as long as the latter stay seated and
thus connected to a receiver. A very similar approach can be found in the “SmartSkin”
system by Rekimoto. In contrast to the DiamondTable, here it is impossible to identify
the currently interacting user, and users are not required to stay connected to a receiver
(|67]). Paradiso found an altogether different approach in [64]: Here, microphones
mounted in the corners of a projection screen are used to triangulate knock-interactions.
This technique allows precise identification of different tapping methods (e.g., fingertips
sound different from fingernails); on the other hand, it offers no way to identify dragging
interactions. Some systems utilizing optical sensors also use triangulation: Therefore, four
or more cameras are mounted in the corners of the display so that they cover the complete
interaction area from the side. The commercially successful “SMART Boards” [@28], e.g.,
use this technology. The maximum number of simultaneously identifiable depends on
the number of used cameras but is generally quite low. Another vision-based approach,
which utilizes “Frustrated Total Internal Reflection”, was introduced by Han in [32]. The
target hardware for the system developed in this thesis also depends on this technology
(see chapter 6.1 for a detailed introduction). All of these technologies were used from the
beginning to support social, collaborative tasks. The upcoming “Surface” from Microsoft,
which also features a horizontal direct-touch display, seems to aim primarily on social
applications, too. With this, tabletop computing seems on the verge of entering the
main-stream market ([@12]).

So, an interactive tabletop display is a good basis for a system that attempts to enable
social and collaborative access of digital music collections — and this is exactly what we
want to create in this thesis: A system to support casual, collaborative browsing of music
collections. The next section will demonstrate how such a system may look by giving a
short preview of the result of our development process.
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Figure 1.1: In this AudioPhield screenshot, taken from the user study (see chapter 7 on
page 75), two people are simultaneously browsing their combined collections. Note the two
magnified areas, and the currently playing song in the the upper right corner.

1.2 AudioPhield: A preview

AudioPhield represents all songs in a private music library as small icons spread over the
whole display. The placement of these icons follows automatically computed similarity-
measurements, which are derived from MIR-algorithms and tagging-data from a social
music-service called “last.fm” [@7]. So, songs that are perceived as similar are placed close
to each other. To obtain more detailed information about an area, users can create and
move focus areas. These areas use distortions and magnifications similar to fisheye lenses.
Because there is no icon occluded by this transformation, context-information is preserved.
There are two ways to manipulate focus areas: ZoomFrames and SoapSpots (used in the
screenshot). Songs are either played fully by double-tapping them or just partly for scan-
play. The playback volume is controlled by a mobile widget. See Figure 1.1 for a screenshot
of the prototype presented in this thesis.

We discuss why we implemented AudioPhield in this way in the following chapters:
First, we outline related work in chapter 2. Then we will give a detailed introduction of
aspects of typical music consumption behavior, which motivated many design decisions
during the development of AudioPhield. Chapter 4 summarizes the concrete goals and
tasks following from these considerations. After that, we will reconstruct the designing
process of several major aspects of the interface by identifying important subproblems and
discussing alternative solutions. Chapter 6 contains implementation aspects as the general
architecture and data flow, the realization of the distortions, or the mechanics behind the
similarity-based placement. Afterwards, we detail the conduction and results of a first
user study in chapter 7 before we finally conclude this thesis with a summarization of the
findings and a recommendation of directions for future work in chapter 8.
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2 RELATED WORK

2 Related work

The task of creating a software system that supports collaborative and explorative browsing
of music collections touches different branches of research:

It is foremost an information visualization problem to depict an entire music collection®.
Then, to make this visualization adept for explorative browsing, we deemed it sensible to
base it on similarity data (see section 5.1 for an discussion of this decision); therefore,
AudioPhield is closely related to some contributions in the field of Music Information
Retrieval (short: “MIR”): Finding similarities between songs and using this information to
navigate through music collections is one of the core topics of this discipline. Furthermore,
AudioPhield is supposed to aid and encourage collaborative browsing on tabletops.

This chapter is dedicated to outline and summarize some of the major contributions
done in these three areas of research. However, we do not attempt to deliver a complete
list.

2.1 Information Visualization

The discipline of Information Visualization (short: “InfoViz”) is dedicated to “the use
of computer-supported, interactive, visual representations of abstract data to amplify
cognition”[12|. So, essentially most of the design decisions made for AudioPhield are
related to knowledge from the research discipline information visualization in some way.
However, to prevent this chapter to go beyond the scope of this thesis, we mention only
techniques to make large collections of data - such as music libraries - comprehensible;
other usages of information visualization knowledge for AudioPhield are mentioned there
(see especially chapter 5.1.2)).

Making large data collections accessible and comprehensible is one of the core problems
of InfoViz. One of the easiest ways is the so called “scatterplot”. It is used to spread a
big dataset consisting of at least two-dimensional entries out on a two-dimensional field.
Therefore, two attributes of the dataset are chosen and interpreted as Cartesian coordi-
nates® and every item of the dataset is depicted as a point in this space. Scatterplots
essentially utilize one of the in 1912 by Koffka et al. introduced and 1935 in [45] reprinted
Gestalt laws, namely the proximity law that states that objects located close to each other
are perceived as similar. Thus, scatterplots are a very powerful way to visualize relations
between data objects.

While scatterplots already prove to be valuable in statistical software, they become
the basis for complete user interfaces through the addition of some sort of interaction.
Ahlberg et al. were the first who introduced this kind of interface in [2], and they were
also the ones who coined the phrase “starfield” for them. These authors also pointed out
in the same publication how valuable starfield displays are for explorative tasks. To prove
their concept, Ahlberg presented together with Shneiderman, one of the co-authors of [2],
the “FilmFinder” in [1] (see Figure 2.1): A complete database of movies is depicted in
typical scatterplot-style as tiny rectangles localized according to “popularity” and “year
of production”. Users can then change the amount of shown movies on the one hand by
applying special criteria (as director, genre, or ratings) through interaction elements placed
around the scatterplot. On the other hand, users can zoom into the view to see only a
part of the data; which part that is can be adjusted with two sliders placed near the axes.

Tt seems obvious to wvisualize data to make it comprehensible instead of, e.g., aurealizing it. This can
be explained by the fact that the perception bandwidth of the human sense of sight is larger by magnitudes
than the bandwidth of all other senses [78].

% It is also possible to create 3D-scatterplots by choosing three dimensions as Cartesian coordinates.
However, since computer monitors and paper are only able to present two spatial dimensions, these are
considered unclear and thus rarely used.
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Figure 2.1: Screenshot of the “FilmFinder”. The interface is set to only show movies from
1960 to 1995 with a popularity above 2, and to show details to one specific item. Picture
source: [1]

To obtain detailed information about a movie, the user can select one single rectangle to
make a detail-window appear.

Ahlberg proved further, how generally applicable and valuable this method of infor-
mation visualization is, with his company Spotfire Inc.: Their products, which are all
based on the starfield displays presented above, are used in virtually all industries today
[@27, @29].

Scatterplots and starfield views have one inherent problem: They are limited to visu-
alizing only two (or in case of 3D-scatterplots: three) dimensions of the data at the same
time® . When the data is low-dimensional or only few dimensions need to be taken into
account at a time, this is not a problem. However, scatterplots can not be applied on
high-dimensional data without omitting the majority of the information.

One solution to this problem is to reduce the dimensionality of the data set with math-
ematical and statistical procedures like the “principal component analysis” introduced by
Pearson in [65] or “latent semantic indexing” (see [21]). While these techniques reduce the
dimensionality possibly remarkably (dependent on the data), they are rarely able to reduce
the dimensionality enough to use scatterplots. And even if they do, the output is usually
not suited for information visualization because the reduced set of dimensions consists of
etgenvector-like factors that correlate to the original dimensions but not necessarily to a
graspable concept.

Another possible approach is to compute a “similarity matrix” that holds a proximity
value for each element pair in the dataset. Different functions (so called “distance metrics”),

5 The number of dimensions visualized can easily be increased by depicting data objects in different
colors and shapes as shown in [92, p. 142]. However, here the maximal cardinality of a distinguishable set
is rather limited, i.e., not many different values can be encoded in these perception channels to preserve
discriminability (e.g., only four different shapes). Also, information presented in color or shape coding are
not as immediately comprehensible as spatial relations [55].
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like the Euclidean distance’ or the Mahalanobis distance® can be used for this computation.

This matrix is the basis for various techniques like “multidimensional scaling”(see [6] for
an introduction) or “space-filling curves” 71|, which try to arrange all the elements of
the database in such a way on a plane that the similarity values in the matrix match
the (Euclidean) distances in the final layout as close as possible. So, these techniques
enable the visualization of high-dimensional data on low dimensional output devices while
preserving similarity relations, and are thus nearly as intelligible as scatterplots. They
do not create an explicit mapping function, though; that peculiarity requires that the
complete procedure needs to be restarted from the beginning when elements are added to
the database or taken from it [43, p. 32f]. Also, the resulting layout may look completely
different from the original one after such a recomputation. This shortcomings make them
difficult to use in interactive systems.

Another possibility to realize similarity-based visualization of high-dimensional data
are the “self-organizing maps”® (short: “SOM”) invented by Kohonen. Although they are
useful for a wide range of tasks (as, e.g., speech recognition or cloud classification [@4]),
they have been applied mostly to visualize data since their introduction in [46] from 1981.
The SOM is basically a simple artificial neural network that is trained unsupervised, i.e.,
without correction values or manipulation. The network consists of a grid of neurons,
with each holding a vector of the same dimensionality as the input data. The algorithm
seeks for each item the neuron whose vector is closest to the input, places the item in
the node’s proximity and adjusts the node as well as some surrounding nodes according
to the item. A more in-depth description of how a SOM is trained can be found in
section 6.3.2 on page 64. After the training process is finished, a similarity-based layout
for the input data has been found. Since the influence of new data decreases in most
implementations over time, also a stable mapping function evolves from this technique.
So, although self-organizing maps do not necessarily deliver the provably optimal layout
as the approaches before, they seem better suited for interactive tasks. See [47] for an
exhaustive discussion of SOMs and possible variants.

Large data collections — independently of the used layout algorithm — usually can not be
depicted completely on the same output device at the same time without massive clutter,
which renders the interface unusable. Therefore means must be found to view only clippings
of the complete dataset. The usual solution to this problem is zooming and panning — as it
was implemented, e.g., in FilmFinder. However, this solution has one big downside: If the
magnification is set to a low value, detailed information is missing and the interface seems
cluttered; is it set to a high value, then all details are shown but context and overview are
lost.

Various so called “focus+context techniques” were developed to enable interfaces that
show detail and overview at the same time (see, e.g., |79, 40, 52[; [54] offers a good taxonomy
of the general concepts). One of the most popular of these is the “fisheye view”, which was
named after the wide-angle fisheye lenses that shows details in the focus area and remote
regions in progressively less detail, introduced by Furnas in [31]. This approach computes
to every element of the data collection that is to visualize a “degree of interest” (short:
“DOT”) value based on the spatial distance to the focal point and the a priori importance

" Euclidean distance d. : de (Z,7) = (z; —y:)?, with Z, 7 € R™

8 Mahalanobis distance d,y, :

dm (Z,7) = \/(5:’— 7T ©-1 (& — §), with covariance matrix 2, and 7, € R"

See [24] for a complete introduction.
?Self-organizing maps are sometimes also called “Kohonen maps” after their inventor Teuvo Kohonen.
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Figure 2.2: A graphical fisheye-lens applied to a photo. Picture source: [14]

of the element. The DOI value then determines if an element is even displayed, and if
so with what size. Sarkar and Brown extended Furnas’ concept in [73] and made it more
generally applicable. This contribution created also the mathematical base for many purely
graphical fisheye implementations as the one in [14] illustrated in Figure 2.2. These fisheye
views resemble more the projections of real-word fisheye lenses after which the concept was
named. However, there exist, to our best knowledge, only a few implemented systems that
combine scatterplot-like visualizations with fisheye views. Two examples are the library
visualization “star-fish” by Sanchez (see [72]) and a system targeted on PDAs from Biiring
et al. presented in [8], which is supposed to visualize a dataset of books, too.

2.2 Similarity-based Music Browsing

As stated, AudioPhield as an approach to make music databases browsable in an explo-
rative way based on similarity estimations. This is one of the core goals of researchers
of “Music Information Retrieval” (short: “MIR”). Insofar, it is no surprise that there are
already various attempts to achieve the same. The following paragraphs shall introduce
some of them. Most of the systems enlisted below depend to some extent on attributes of
the examined pieces of music that are not included in the usual metadata from ID3-tags
and suchlike. These values usually get extracted from the music itself by means of various
algorithms developed by MIR researcher community. We will not address contributions
made in this area of research, but will focus on complete systems intended to browse music
only!?.

Torrens: “Visualizing and Exploring Personal Music Libraries” Torrens et al.
present in [83] a user study in which they compared three different visualizations of a music
library. The first visualization they created is a screen-filling disc on which the songs, which
are depicted as dots or, if they are part of a playlist, as crosses, are distributed according
to their genre and age. The disc is divided into sectors representing all genres in the
library. The amount of songs in a genre, in comparison to the whole library, determines

10Readers, who are interested in psychoacoustics and MIR-algorithms, may find a good overview in [61],
[26] and [74], or in our previous work [75]. See also chapter 6.3.1 (p. 57f.) for a discussion of some of the
usual techniques.
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thereby the size of each sector. The sectors are subdivided in the same manner using artists
instead on genres. The outer regions of the disc hold the most recently published songs,
pieces of music in the center are the oldest. Users wishing for more detail can zoom into a
sector, which is then the basis for a new disc divided into artist-sectors or, in the highest
zoom-level, album-sectors. The second visualization uses a rectangle instead of a disc but
follows otherwise the same principles and resembles essentially a starfield view. The third
visualization uses Tree-Maps: The screen is divided into rectangles representing genres,
which are recursively split into rectangles for sub-genres and artists, in such a way that the
area of each rectangle depicts the number of songs represented by it in comparison to the
whole collection. Individual songs are not displayed. All three visualizations are certainly
useful for giving users a good overview of a music collection. However, the system delivers
no information of how an individual song sounds (without playing it) or how similar it
sounds to other songs — genres are too vague for this.

AudioRadar Hilliges et al. introduced in [36] with “AudioRadar” a visualization that
is targeted especially on relating songs to each other based on their content, not their
meta data. Therefore they compute four high-level attributes like “clean/rough” or
“calm/turbulent” for each song. AudioRadar was inspired by real-world radar screens
and utilizes this metaphor clearly: In the center of the screen, where in naval situations
the ship would be, resides the currently playing song. A few other songs that sound similar
to that piece of music are displayed in the surroundings as little “play”™-buttons with title-
and artist-texts below them. The proximity to the center encodes thereby the general
similarity of a song, the sector, in which a song is placed, indicates the dimension in which
the song differs most from the central. Users can navigate the “Sea of Sounds” gradually
by just double-clicking on a song.

AudioRadar also offers a second interface to create “mood-based playlist[s|”. These
playlists are created by specifying value ranges with sliders for all four dimensions of the
radar view; only songs with values inside these intervals become part of the playlist. To
aid the selection process a typical starfield view is displayed: All songs are placed as dots
on a plane. The user can choose which of the four dimensions from the radar view should
be used to position the songs.

The consistent radar-metaphor makes AudioRadar easy to understand and offers the
user a convenient way to browse casually. Also, since attributes extracted from the music
itself are taken, relations are more meaningful than just the usual metadata. However,
there are no zooming capabilities or other means to provide users with an overview.

Marsyas3D George Tzanetakis, thanks to his “MARSYAS” framework (see [85]) one of
the leading scientists of MIR, presented in [86] a few visualizing modules for his framework.
Among them are two interfaces, the “Timbre2D” and the “Timbre3D”, that represent a
collection as two- and three-dimensional scatterplots. These viewers are connected to other
parts of the framework in a very flexible way. So, any data that the framework can create
— including position data from any form of multi-dimensional scaling — could be visualized
in one of the spatial dimensions or as color or shape. Intuitive zooming capabilities make
browsing the data seem easy; missing labels for the depicted data, however, show that the
system is not intended as tool for non-scientific users.

ArtistMap Van Gulik ef al. present in [90] a browser application that does not operate
on song-, but rather on album-level. At first sight, the interface seems to be a ordinary
scatterplot with two clear spatial dimensions, like “year” and “tempo”, along which the
artists, represented as colored disks, are positioned. Actually, the layout process is more
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complicated: For every artist pair a similarity value based on a number of attributes
(obtained from webservices or manually assigned) is computed. These values decide if
two artists are considered “connected”. The placement is done by a force-directed graph-
drawing algorithm. It computes two forces for each artist-disk: A connecting force pulling
it to connected disks and a magnetic force pulling it towards its trivial point in the scatter-
plot. The final layout is the result of multiple iterations of applying these forces until an
equilibrium is reached. Thus, a combination of scatterplot-like overview and artist-clusters
is displayed.

Search Inside the Music “Search Inside the Music” is a project, which is currently
being open sourced ([@5]), for explorative browsing of music collections and automated
recommendations developed at the Sun Labs of Sun Microsystems, Inc under the lead of
Paul Lamere. Their user interface consists primarily of three different three-dimensional
visualizations shown simultaneously. The first is similar to the Timbre3D browser described
above: Colored spheres representing single songs are located according to their musical
similarity in 3D space. The position of each sphere is computed from multiple MIR-
algorithms combined by a multi-dimensional scaling algorithm. The size of a sphere is
proportional to the popularity of a song. When a user clicks on a sphere to play a song,
the second visualization, the “Album Cloud” appears. At the center of this cloud, the
album artwork of the currently playing song is surrounded by the album covers of similar
pieces of music. The third visualization also uses album artwork. It consists of a grid of
squares with the album covers as textures, again sorted by similarity. The grid as a whole
can take multiple forms, e.g., a loop or spiral around the floating spheres and the Album
Cloud [51, 50].

Islands of music Pampalk created in his master thesis (|63]) the visualization system
“Islands of Music” (short: “loM”). The program computes various attributes to each song
in the database and trains a self-organizing map with these attributes. This trained map
is then the basis for the interface, which follows the metaphor of a geographical map of an
archipelago. Pampalk uses therefore a two-dimensional grid in which each square is related
to a node in the SOM. Then, the amount of songs assigned to a node is used to calculate
a color for the center of each square. By employing a color scale that maps low amounts
on blue, medium on yellow, and high amounts on green colors, and by interpolating these
colors between the centers of the squares, a visualization emerges that resembles a geo-
graphical map of islands. These islands are then either annotated with labels for overview
or with a white dot for each song that can be clicked to play it.

Islands of Music was the spark for many similar systems, i.e., systems that utilize a
SOM to arrange songs from a collection on a plane'!. Knees et al., for example, trans-
formed the IoM in [44] into an actual three-dimensional landscape that can be explored
using an ordinary gamepad. Songs are here not played explicitly but automatically if the
user comes close enough to their place on the map. Another extension is the “PocketSOM”
([39]) player that targets mobile devices and adds the capability to create playlists by
drawing lines on the map. The “MusicMiner” in [58] is also very similar to the original
IoM; here, however, the original distances in the high-dimensional space are used for the
relief instead of song densities.

AudioPhield as well uses a SOM for the placing process and is in this way closely related
to the Islands of Music. However, while the presented systems aim at quite different screen

""However, [63] was not the first publication in which SOMs were used on music collections. This honor
belongs, as far as we know, to Feiten and Giinzel in [28].
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sizes, from mobile phones to wall displays, there is to our knowledge no attempt to create
a music browser for tabletops similar to AudioPhield!?.

2.3 Social Media Browsing on Tabletop Displays

The above listed MIR-systems do generally not support multiple users but only one. Thus,
while they may support casual browsing, they do not inherently support collaborative'
casual browsing. This section enlists some approaches for collaborative or social browsing.
We limit our considerations on tabletop displays because collaborative systems targeted
on vertical displays or remote collaboration have different scopes and requirements [69].
Surprisingly, although there is a lot of research investigating aspects of optimal tabletop
interface design like “reach” ([82]), “precise selection” ([5]), or “rotation” (|33]), there are
few complete systems.

Personal Digital Historian The early work of Shen et al. |77] is one of the first software
systems that recognizes the possibilities of tabletop displays for digital media browsing.
Targeted on a circular vision-based direct-touch tabletop, the system shows a collection
of photos in a radial pattern according to meta data such as “date” or “event”. Users can
modify this initial layout simply by dragging individual pictures. The paper also outlines
an optional area on the table, which was not yet implemented in [77], where a stream
of pictures moves slowly along. Hinrichs et al. [37] enhanced this idea in the form of
“currents”, deformable display areas, in which pictures float slowly. Users can take photos
from these areas and put them back at any time. Thus, currents serve as shared, public
repositories.

TViews: Picture Sorter & Map Browser Mazalek et al. present in [56] two appli-
cations for managing and browsing personal media collections for the “T'Views” tabletop
display, which uses acoustic triangulation of special “pucks” for interaction. The first ap-
plication, the “Picture Sorter” is less targeted on browsing than on sorting of photos. For
this purpose, the system shows a few photos that are to be sorted into groups by multiple
users. The second application is the “Map Browser”, which shows a timeline on a side of
the screen from which picture groups can be dragged. Dots on a geographic map in the
background depict at the same time where the pictures were taken. The idea of presenting
a timeline as a central device to access the photo library can also be found in “PhotoHelix”
[35]. Here, however, the timeline takes the form of a helix that can be rotated by means
of a special input device at the center of a helix.

The MUSICtable The MUSICtable by Stavness et al. [80] fits the criteria of a casual,
social browsing system only in the broader sense, but it is one of the few systems concerned
with music. It presents a manually created map visualization of a music collection on a
tabletop display. This display has no direct-touch capabilities; instead, there are eight
buttons mounted around the table. Users can press these buttons to influence the “wind” on
the music map, which moves a cursor over the table. The position of the cursor determines
the next piece of music to be played when a song finishes. The interface only hints at what
music is located where by coloring parts of the map differently according to the genre they
represent. The system showed to encourage collaboration but allows only very limited
interaction and gives no detail information about the songs.

12 There is one approach outlined in [38], but to date there is no publication about the actual interface
design.
13In the sense of a social process of co-located users.
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mTable Chiu et al. introduce the “mTable” in [15]. Their target hardware is a large
screen integrated in a couch table with no touch-input recognition. Mutliple users can
interact with the system simultaneously with two ordinary gamepads. One of the appli-
cations created for the mTable is the visualization of a photo collection in the form of
thumbnails scattered over the interface according to similarity. The layout is thereby cre-
ated by a force-directed algorithm. Users can influence the layout interactively by moving
pictures individually or by dragging labels that relate to whole groups of pictures.

Microsoft Surface Microsoft presents in one of the promotional videos'* for the soon
to be published “Microsoft Surface” system an integrated media browser for different kinds
of multimedia data. Photos and videos can be placed, rotated and scaled arbitrarily on
the interface by touching them directly. Music is represented as album artworks that can
be flipped over by a single tap to access the track list. However, precise information of
how the interaction is supposed to work in detail and how it performes in supporting social
browsing is not available at the present day.

DTLens In [29], Forlines and Chen present their project “DTLens”, which is especially
aimed at visualizing spatial data on tabletop displays in a multi-user environment. They
use therefore the “DiamondTable” mentioned in the introduction, which provides the ap-
plication with multi-point touch input. To avoid that users get lost in the data they apply
a focus+context-strategy: Simply by pulling two touchpoints apart, areas of heightened
magnification are created. These can then be moved or locked for longer examination via
buttons aligned at a side of the rectangular focus areas. In a subsequent publication ([70]),
Ryall et al. studied the experiences of several hundred users, who interacted with the
system at different symposia, and conducted that this design found the general approval
of the users.

14 Accessable at [@12].
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3 Aspects of Music Consumption

AudioPhield is an attempt to create a user interface to assist and support social browsing
of music collections. Therefore, we need to know how people usually organize and access
their collections on the one hand, and how they talk about, share, and consume music
together on the other hand. This chapter illuminates some important aspects regarding
these topics for the design of AudioPhield.

3.1 Personal Music Libraries

To understand how to support browsing of a personal music library, we first need to inves-
tigate how people organize, access and maintain their libraries. We limit our considerations
here on non-professional, casual users. Professional users have a good command of a musi-
cal language that is incomprehensible for amateurs, and, most likely, different requirements
on music databases|61, p. 28].

3.1.1 Typical Organizations

The organization of personal music collections was usually determined by the dominant
physical storage medium. For nearly as long as the record industry — in the modern sense
— exists, music was usually obtained in the form of record albums'®, compilations of 30 to
60 minutes of music, regardless if stored on vinyl, tapes or CDs'6. Thus, private collections
also feature the album as the basic unit. These albums usually belong to three different
parts of the library:

e The active set contains the music that is currently most heard. There may be
different active sets for different occasions and places (e.g., “car-music”).

e The main collection contains all albums that match the current musical preferences
of the owner but are less frequently played.

e The archive contains music that is stored for nostalgic reasons but very rarely
played. This set is not necessarily separated physically from the main collection.

These sets are organized differently: The working set comprehends rarely more than
a few albums and follows usually no particular order, while the other sets are typically
ordered by date of purchase, date of last playing, major genre, artists, or combinations of
these [20]. See Table 3.1 for a summarization.

Similar peculiarities can be found in typical digital music collections, too. Most users
maintain a single folder — the analogon to the main collection and the archive — that holds
all of their music in the form of a long list of subfolders for each artist or album. In some
cases, there is also a (frequently ill-maintained) preselection into genre- or occasion-folders.
Active sets can also be found in different forms as special folders or playlists for special
occasions or moods. The songs stored in mobile players with small capacities can also be
understood as an active set. Organizing the library in the file-system grows less important
with the progressive distribution of modern music players like iTunes, which incorporate
complex “library”-functions to hide the actual place of storage. These programs allow also
accessing the collection by track instead of album — they privilege it even. Furthermore, the

15«Singles”, i.e., media which typically comprehend just one song in few variations, were in recent years
commercially irrelevant[@24].

1670 list the most popular. Other formats, like the “DVD-Audio”, which had less distribution, also hold
just one album in most cases — in spite of capacities that would allow for more.
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Active Set Main Collection Archive
Typical size (albums) < 10 > 100 -
Music homogeneity high low low
Typical granularity songs whole albums whole albums
Access frequency regularly occasionally rarely
Frequency of change regularly occasionally rarely
Typically sorted by || recency of playback genre/artist genre/artist
Typical broyvs1.ng low low / medium | medium / high
specificity
Prlmal.'y browszng artist /title album art album art
information

Table 3.1: Major parts and important features of a typical private music library of an adult.
A typical size for archived albums is hard to number: It varies too strong depending on
age and individual collecting type.

iTunes music store, like all other popular web music stores, sells music also by track instead
of whole record albums. Thus, the album, whose popularity arguably stems from the fact
that it is the usual form in which music is obtained, might be replaced by the individual
song as smallest unit to organize and access private libraries. However, as recent purchase
trends [@25] show, the “death of the album” as suggested — among others — by Campbell
in [11] is arguably at least a few years away. This can be explained to some extent with
the notion that the arrangements of albums receive often a lot of attention to relate tracks
with each other. So, individual songs are augmented with meaningful context and the
album as a whole creates a more intense experience [89, 42].

3.1.2 Accessing the Database

How people access their database depends heavily on their current context. In most cases,
in which the listening to music is not their primary activity but rather an accompaniment
(according to [68] the more frequent case by large), users will only play songs from their
active set. So, they just start the appropriate playlist (or their mobile music player) and
listen to albums or single tracks at random. Here, playlists are rather means to define
subsets than to play songs in a particular order. The browsing, if there even is any, is
thereby usually limited to pressing “next” until a song is found that “fits”. For this, they
frequently activate the “shuffie”-function of their player — some users, like the author, even
have their complete collection on shuffle. Since all of the songs in an active set are well
known to the user, the primarily used information for this undirected browsing are the
name of the performing artist and the song’s title (see also Table 3.1). Information about
the album to which a song belongs is irrelevant to identify a song |7, 9, 20].

When users focus on listening to music, their accessing strategies change: Sometimes,
they have a special song or album in mind, which they can easily find by the usually avail-
able textual search. Generally, however, their browsing behavior is still rather undirected,
albeit their scope is not limited to active sets but may also include the main collection
or even archive albums. To support this kind of browsing, other information is necessary:
The often found linear search through the long list of all available tracks seems more the
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result of the capabilities of current access interfaces than of the users wishes. While typical
genres, like the 127 defined in the original ID3-tag format[@22], are rarely used (the artist
name seems to convey more information), idiosyncratic genres for mood, situation or activ-
ity are highly appreciated when available, e.g., in the form of arbitrary tags. Furthermore,
browsing for “similar artists” or “similar songs” to a given piece of music is considered
very valuable for browsing, and thus it is intensively — and successfully — used through
web-services like “Pandora” ([@17]) and “last.fm” ([@QT7]).

Also, besides textual information such as the artist’s name, album-art is one of the
dominant bases for judgment: While it encodes the same information as the combination
“artistname + albumname”, it can be faster comprehended. Of course, this holds only true
when the user is familiar with the albums. If this is note the case, though, album art might
still be valuable since it allows some rudimentary genre estimations. While the mentioned
information suffices for browsing the library, it is often not enough to satisfy the users’
wishes for information: They feel their music listening experience is significantly enhanced
if they have access to additional data like song lyrics, artist biographies, or video clips.
[7, 20, 62, 89]

So, in one sentence, users access their music libraries usually by undirected, casual
browsing with the intention to find appropriate music for the current mood or activity.

3.1.3 Finding New Music

There are generally two ways to find new music to add to one’s private library: To go
looking for new tunes actively, or to stumble over unfamiliar tracks casually while doing
something else.

Actively searching for music meant traditionally going to a store and look for promis-
ing albums in the shelves. Since usually nobody has the time to listen into all available
records, shoppers typically look for bands they already know or at least have heard of.
Or, they try candidates from the current charts. Many modern recommendation systems,
from Amazon’s famous “Customers Who Bought This Item Also Bought” to last.fm’s per-
sonal suggestions, follow essentially the same scheme (called “collaborative filtering”) of
monitoring the behavior of a large group of people to find proximities between different
albums. So, essentially, these recommendations can be seen as social similarity estimations
[17, 18, @32].

Social recommendations are — between incidentally hearing a new tune en route in
the radio, watching TV commercials with an intriguing acoustic background, or live-music
encounters in a pub — also the basis for many casual serendipities of new songs: Music is
a very popular conversation topic and listening to music together a usual activity. So, it’s
only natural among friends to exchange recommendations. Gatherings of this kind are also
the usual surroundings when music is shared among friends (see below). Indeed, copying
music is sometimes the primary incentive to meet. Personal recommendations tend thereby
to be quite accurate, even if recommender and recommendee do not share the same taste
[7, 91, 18].

All these different ways to encounter new albums to add to one’s personal library
have one thing in common: The new music usually matches the current preferences of the
listener. So the new music is most likely very similar to tunes already in the collection.

3.2 Social Aspects of Music Consumption

Listening to music together is in itself a social experience. By creating a sense of common
context and inducing similar emotions, music synchronizes the listeners sometimes very
bodily at a dance or in surroundings where music is just ambient accompaniment [23].
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But, of course, there are more aspects to collaborative music consumption. The following
sections will illuminate some of these.

3.2.1 Identity in Private Libraries

Music is directly connected to peoples’ emotions and thus to a very private part of their
personalities. So, the content of an individual’s personal library sheds much light on her
character. A related matter is the fact that we define in part who we, as a group of people,
are, and who belongs to us (whatever this group might be) by a common taste of music
(among other things like clothing or haircuts). So, music serves as a way to craft and
maintain identity as an individual and as a group — and it helps to define the place inside
the group, too. This manifests itself, e.g., in prejudices: If someone meets somebody who
listens to a song the first person likes, too, she will usually feel more sympathetic towards
that person than otherwise. And the reverse of this argument holds true no less: Listening
to music one deeply dislikes makes the counterpart immediately less likable |7, 17, 57].

Considering these observations, it is not a surprise that most people are hesitant to
give complete strangers access to their private libraries. In circumstances where they can
expect strangers to see their collection, people often try to manipulate their appearance
by presenting their music habits in a specific way. For example, hosts of a dinner party
might hide their ordinary pop albums and instead exhume old jazz records to appear more
sophisticated; another example is the dismissive utterance “it was a gift” when a forgotten
album is held up with a ridiculing glance. This holds even true in circumstances where it
seems highly unlikely that people meet in real life: One of the most demanded features of
last.fm-users, whose music listening habits are displayed publicly on the service’s website,
was a function to remove artists from their personal page — and it is now, that it is available,
quite popular and replaces practices like mislabeling songs on purpose [@9]. Which music
it is, people like to be seen with, depends entirely on the social context and may vary
strongly. Most individuals, however, feel only in the presence of close friends comfortable
to present their complete private library [7, 20, 91].

3.2.2 Collaborative Choice of Music

There is a big difference in how people choose music for themselves and how a group of
people decides what they want to listen to. This is again closely related to the coupling of
musical taste and identity. Most people will hesitate to propose a song, whom they think
the majority of the group will not like. Choosing the music single-handedly in a gregarious
or even public setting is an expression of power: The choosing person sees herself as the
leader of the group and can hence speak and decide for all of them. This behavior can
often be seen when the circumstances expose a person; the host of a party or the DJ in a
dance club are good examples.

In most cases, however, especially in rather intimate surroundings and peer groups,
choosing music is a complicated process which involves various social activities as dis-
cussing, bribing, winning & losing, or generally “doing friendship”, as O’Hara et al. put it
in [60]. As discussed above, this is no surprise: Again, the group is redefining who they
are by finding a common taste [57, 60].

The activity of choosing music is generally perceived as well spent leisure time in itself
and often interlaced with “Music Talk” as described in the next section.

3.2.3 “Music Talk”

There are, to our best knowledge and according to Brown & Sellen in [7], no studies that
focused on how people listen to music together and how they talk about music while doing
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so. However, by drawing information from studies like [4] from Bassoli et al., which are
foremost concerned with other topics, from our personal experiences, and from studying
about 50 threads in the popular music forums!” “MuzicForums.com” [@19] and “MySpace
- FORUMS” [@20], we feel competent to present the following observations and introduce
the term “music talk”.

A lot of the conversation around music has to do with the above introduced matters
of identity maintaining: The group as a whole defines its identity with crafting a common
sense of taste and the individuals define their space in the group by relating to the pref-
erences of peers and their common ground. This kind of conversation needs — and creates
— a sense of intimacy between the participants because the revealed preferences are often
something highly personal [23, 91].

The playing music itself is often the center of the conversation: The listeners state how
they generally feel about a song (which can involve strong feelings: “I HATE this song |...]”
[19, p. 475]) and how they estimate its general quality (according to user “Rollxy” Billy Ray
Cyrus’ “Achy Breaky Heart” is “[..| the worst song to ever be sung on this earth”). These
statements are frequently refined by remarks about the specific qualities of a song like the
general composition (“the bass and guitar just click right”) or individual performances. The
conversation also includes comparisons with other songs and albums from the same artist
(“ Their old stuff is really good, but the recent s***2”) or different artists altogether (“he
has, like, the same voice as |..]”).

Very different, but closely linked nonetheless, from the just described music-centered
talking is the music-triggered talking.

As discussed in the introduction, music has the power to affect someone’s emotions.
This association works in both ways: If people experience moments of strong feelings, the
music that accompanies that moment becomes an integral part of the memory about this
moment — even more so, if the song in question was previously unknown to the person; a
couple’s “our song” is a common example. So, when the same song is played afterwards, it
conjures up the mental image of the original experience. In the same way, strong emotions
installed by a piece of music become associated with the current surroundings, activities,
and people. The connection varies in strength according to the intensity of the felt emo-
tions: In rare cases a piece of music becomes the “theme song” for an event, but normally
the association is fainter [4, 23].

Thus, music can trigger memories, of events actually linked with the music like a live
concert, or of events which were accompanied by the given song randomly (e.g., a song
playing in the radio on the way to an vacation resort). These memories become part of the
conversation and can lead to common reminiscing about the events associated with the
song. If not all members of the group share the conjured memory, others usually tell the
story. Of course, the initially triggered memory or its generally mood may spark memories
— and thus talking — of other, in any way associated events or songs. Those topic-“jumps”
occur spontaneously and the linkage may be impossible to anticipate. However, the
general topic “music” is usually preserved [4, 23, 89].

All the mentioned aspects, the analyzing of the playing music and the performing artist
as well as the reminiscing, are inseparably interwoven and build together what we want to
refer to in the future as “music talk” in analogy to the term “photo talk” coined by Frohlich
et al. in [30]: Music talk is also an unstructured and meandering process of discussing

'"We are aware of the fact that this is written conversation between mostly anonymous users, not actual
face-to-face chatting. However, many of the users, who have often already common ground by feeling
similar towards the same music, share each others presence in the same threads long enough to have built
up intimate relations. This, and the resemblance of casual conversation on most threads make these forms
of interaction arguably close enough to ordinary talking to strengthen our argument.
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casually the actual documents and reminiscing together or telling the stories of the events
associated with a document — only with music instead of photos as focus point. If music
talk happens to take place in surroundings, where the participants are in control over the
played music, presenting of songs and pointing out peculiarities takes place similar to the
behavior observed by Frohlich [60].

3.2.4 Music Sharing

The sharing of music, i.e. giving a friend a copy of tracks from one’s own private collection,
can be seen as the natural extension of “music talk” as introduced in the previous section.
However, if the sharing is perceived as a current task and not the consequence of an
incidental finding during general music discussions, the conversation and behavior of the
participants changes and becomes more asymmetrical: Usually one participant takes a
serving role by browsing her collection to find music she can recommend. This role can get
passed on to other members of the group if they have their private music library at least
in part with them — with the storage capacities of more than 20 gigabyte found in current
mobile music players, this is often the case. If a piece of music is unknown, it tends not
to get fully played but just to “the best part” before it is found worthy of being copied or
discarded; then it may only continue to play until the next potential recommendation is
found. However, the social patterns around the sharing of music are basically the same as
usual music talk, just more focused and less symmetrical [7].

It is worth to note that all these observations apply only to face-to-face meetings be-
tween friends. The popular — and often condemned — peer-to-peer file sharing networks as
“KaZaA” and “Gnutella” lack this kind of complicated social processes; social interactions
are here limited to sharing own songs with others because of a vague sense of reciprocity
[68, 91].

Many of the enlisted aspects base on the capabilities of common, currently available
devices to store and access music. As history shows, music listening behavior may well
change when new systems become available. This was the case with the advent of tape
recorders, when people started to create their own mixtapes and copy their songs for
friends. Another example is the Sony Walkman, which empowered listeners to override
the “soundworld” of their surroundings with their own soundtrack. So, it is reasonable to
expect that new technologies will also induct new behavior [59].
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4 Goals

The last sections elucidated topics and contributions related to the overall goal of creating
a system to support casual, face-to-face browsing of music collections on a tabletop display.
This section is dedicated to specify and refine this task by deducing from the presented
knowledge.

4.1 Usage Scenario

As seen in chapter 3, people’s behavior when listening to music varies strongly depending
on their context. Since these differences in behavior make also very different, in parts
conflicting, demands, one system may arguably not suit all of the possibilities. We limit
AudioPhield’s scope therefore to the following usage scenario:

AudioPhield is supposed to be used with a multi-touch tabletop display in private
surroundings by few (one to four) concurrent users. These may leave or join the group
at any time but they usually participate in the interaction (actively or passively, i.e.,
mere observing) for a longer period of time. All users are supposed to be interested
in music'® and know each other well enough to feel comfortable to present their pri-
vate music library (see paragraph 3.2.1 on page 16). Browsing and listening to music
is the main occupation of the group. Their browsing is casual, i.e., no specific song
is to be found. Furthermore, the users do not primarily aim to copy music from each other.

In this scenario, we can refine the task “support for casual, collaborative browsing” with
the previously established terminology: AudioPhield shall support “music talk”, as intro-
duced in 3.2.3, as good as possible. The system should thereby at least enable symmetrical
music talk by not forcing any user to take a fixed role (as, e.g., the “presenter” in section
3.2.4).

4.2 Main Issues

A system that performs satisfactorily in the described usage scenario has to feature solu-
tions for the following coherent issues:

Relate Pieces of Music

Casual browsing is to be supported. Therefore, the usual lists sorted lexicographically
after artist or genre do not suffice because no specific song is to be found. AudioPhield
needs thus other ways, which are adjusted to the actual needs of the user as discussed in
the previous chapter, to order and relate items of a private music collection and to visualize
these relations.

Visualize Music Libraries

The task “browsing” demands a suitable depiction of private music collections accord-
ing to Shneiderman’s well-known mantra “overview first, zoom and filter, then details-on-
demand” [78]. This includes: What information is presented when in which way? Also,
since the system must not prevent symmetrical music talk, it needs to be able to depict
multiple libraries at once.

'8This is not a strong constraint: According to [68], 80% of the questioned people (youths up to the
age of 24) rated music as an “essential item”. In comparison: Only little more than 60% saw their mobile
phone as an “essential item”.
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Enable Simultaneous, Collaborative Interaction on a Tabletop Display

Interfaces targeted on direct-touch tabletop displays have to cope with a number of
issues unknown in the design of common desktop applications: Since users may sit
or stand at any place around the table, there is no obvious orientation for text; also,
users may collide physically when changing their position, e.g., to access parts of the
interface that were previously out of reach. Furthermore, the target hardware for
AudioPhield (see 6.1) makes multi-touch input possible. This kind of interaction of-
fers a lot of potential — but the best way to exploit this potential is still a matter of research.

Of course, these subproblems are not really disjoint and cannot be solved independently.
Nevertheless, this segmentation exhibits a good structuring of the design process and will
therefore also be used in the next section, where solution approaches and individual design
decisions will be discussed.
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5 Interface Design

This chapter illustrates the design process of AudioPhield. It consists of a list of subprob-
lems; to each subproblem, we present and discuss our solution and possible alternatives.
The succession mirrors roughly the order in which we identified and discussed the
individual problems. The scope here is what is to be created and why. The “how” can be
found in the chapter “Implementation” afterwards. In reality, of course, the design- and
implementation-phases were not as clearly separated as suggested by this dichotomy but
rather interleaved.

5.1 Relate Pieces of Music

As explained in chapter 3 (especially 3.1.2 on page 13), the mood of songs and similarities
between songs are most important features for casual browsing. Mood can thereby be seen
as included in similarity estimations: If two songs are perceived as generally similar (in
contrast to being similar regarding a special aspect), the mood associated with the songs is
usually alike (see section 3.2.3). Thus, for optimal support of casual browsing, AudioPhield
needs to be able to order and relate songs according to their perceived similarity.

5.1.1 MIR-Algorithms for Automatic Similarity Computation

In order to employ similarity estimations, means to compute indicators for similarity need
to be found first. A good source for these estimations are the various algorithms developed
by the MIR research community. Although the task of content-based automatic extraction
of perceived similarity is generally considered unsolved, we yet hope to achieve reason-
able precision and robustness by implementing some of the most popular techniques. At
this point in design-process it is not clear which algorithms will eventually be used; for
the selection we plan to pursue a trial-and-error approach in the implementation phase.
However, it is already clear that we will use the framework from our previous work (see
[75]), which already includes some of the most frequently used algorithms in MIR (e.g.,
Short Time Fourier Transformations or Constant-Q Transformations) and allows rapid and
flexible addition of new ones.

To use content-based extraction techniques for the similarity measurements has a few
drawbacks. The gravest is that there is no ground truth. Daniel Ellis et al. cast some light
on this problem in [27]: First of all, pieces of music may be perceived as similar or different
in multiple dimensions, e.g., speed, instrumentation, musical key, or lyrics. Usually, people
use a combination of these if they are asked to assign a single alikeness-statement for two
songs; which combination that is, i.e., how much weight for each dimension is used, can
not be deducted from the audio information itself. It depends on personal factors, as
preferences and familiarity with the questionable music, and may well change over time.
Also, as Pachet et al. discuss in [62], some criteria to consider two songs alike may not even
be contained in the audio signal: This applies to cultural influences and meta-data (songs
of the same artist are generally considered similar) as well as to highly personal experiences
(see page 17). However, even if perfect automatic similarity computation is impossible,
[27] showed also that there is still enough common ground to expect estimations which
seem sensible to most people of the same culture group.

5.1.2 Similarity Visualization

Having similarity information of all items in a personal music library is an important step
towards supporting casual browsing, but in itself does not help much. While the usual
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list views of common music playback software may surely be enhanced if the user can sort
them according to alikeness to a specific song, they still seem inappropriate for the given
task: There is no way for the user to judge, how close a song in the list is to the given
one (only more or less similar than songs in the list above and below) and how two songs
further down in the list relate to each other. Thus, AudioPhield needs to visualize the
relations between the songs in the library in a different way. To decide, how to design such
a visualization, it is important to know the characteristics of available display dimensions
and their combinations. The following excursion summarizes some of these considerations.

Excursion: Information Coding

Information can be encoded in various display dimensions. The most important and fre-
quently used dimensions are spatial position, size, color, shape, connection, orientation,
motion, and texture. Most of these variables may be split into sub-dimensions: E.g., the
position along the x-axis may encode different information than the y-position, or color
may be differentiated according to the used color model into a red, green and blue channel
or into hue and saturation (see Table 5.1). While in principle all display dimensions are
capable of visualizing any kind of data, they are not equally adept for certain tasks. Their
adeptness depends fundamentally on the type of data that is to be encoded: Nominal data
demands visual representations that are clearly distinguishable, other data requires that
the relationship between two items (ordinal data) — or in the case of quantitative data:
between items and a fixed zero-point — is comprehensible depicted. Figure 5.1 illustrates
the different applicabilities [92, p.176 ff][55].

Related to the data type requirements is the monotonicity of the visual dimensions. For
monotone dimensions it is easy to understand if visualized data items are greater or less
than each other. With some tricks it is possible to turn every display dimension monotonic
(e.g., while hue is not considered monotonic, a yellow-to-blue transition is); however, some
display attributes, like size or y-position, are intuitively understood to encode quantitative
values and can thus be seen as “natural monotonic” ([92, p. 182f]). Thus, natural monotonic
ways of visualization are best suited for quantitative data.

Especially if nominal data is to be visualized, the concept of “preattentive processing”
is important. It means — simplified — that classification tasks are executed “at a glance”
without individually judging depicted items. For example, a white pixel in a black rectan-
gle of almost arbitrary size can be found in an instant without evaluating the brightness
of every individual pixel. So, preattentive processed encodings are quite valuable for tasks
which involve speedy classification. While all presented display dimensions can be pro-
cessed preattentively, the number of distinguishable discrete values varies strongly. Table
5.1 presents the maximal recommended cardinality of value sets to display for each di-
mension. These numbers are only valid if only one dimension is used for visualization at
a time; the more different dimensions are combined, the less values can be distinguished
preattentively [92, p. 149ff].

In most cases, multiple of these dimensions are combined into one visualization to
enrich the information density. Thereby, one should not neglect the fact that the different
means of coding information are not isolated but may interfere with each other. Some
combinations are plainly impossible: E.g., if circles or dots are used as a shape, orientation
loses its meaning. Other combinations are not mutually exclusive but should still not be
used together as they tend to be hard to read. Table 5.2 illustrates the separability of some
visualization-pairs. Generally, the readability of the visualization decreases with every more

19Connection is essentially binary: Ttems may only be connected or not connected.
20The number of distinguishable values regarding one icon pair is 1 (see previous footnote '°). However,
connections between virtually infinite pairs of symbols are still immediately perceivable.
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Figure 5.1: Effectivity-ranking for various display dimensions on the basis of [55] and [16].
Dimensions depicted in gray are invalid for the given data type.
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Natural Preattentively
Visual variable Dimensionality . . Distinguishable
Monotonicity
Steps
Spatial Position 2 (X,Y) Yes >15
Color: Hue / .
Saturation 2 Yes (Saturation) 8
Color: red-green
/ yellow-blue 2 Yes 8
Size 2(X,Y) Yes 4
Orientation 1 No 4
Texture 3 (orientation, size, No 3
contrast)
Shape 1 No 4
Connection 119 No 0020
Motion Coding 2-3 No 2

Table 5.1: Characteristics of various InfoViz channels after [92, p. 182f]. Regarding shape:
If different aspects of a shape are changed, more than one dimension is possible as demon-
strated with the so-called “Chernoff faces” in [92, p. 239|. In most cases, however, these
combinations offer poor readability.

used dimension. Therefore, a tradeoff between information density and readability needs
to be found.

All of the above observations and considerations must be seen as strongly simplified:
There are a number of ways to encode data and influence factors on sensible selection
of display dimensions for information visualization not discussed here, and unusual cases,
where the presented recommendations are wrong, may easily be constructed (e.g., the color
of very small shapes may be hard to recognize). An in-depth examination of these topics
can be found in the chapters three to six in [92]. The explanations of this excursion,
nevertheless, should suffice to provide the foundation for many of the following design
decisions.

As stated before the excursion, similarity is the most important relationship in a music
library for casual browsing. Thus, it should be visualized through spatial positioning, the
most effective way to visualize data (see Figure 5.1). Also, as a further argument, spatial
proximity is intuitively understood as similarity (see section 2.1). The straightforward
approach, which we also initially employed, is to use a starfield view?! as introduced in
section 2.1 and illustrated in Figure 5.2(a).

Here, the question arises, what is to be represented as icons on the starfield. There are
three possibilities: Artists, albums or individual songs. It is not uncommon to bundle very
different tracks to one album. Depicting albums as small icons at a specific point on the

2'From this approach stems the project’s name: AudioPhield is the playful combination of “audio” and
the fusion of “~phil” (Greek: loving) and “field” from starfield.
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position size shape color miﬁi}; 0 rotation
position ++ ++ ++ - - +
size ++ - 0 0 _
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Table 5.2: Separability of some display dimension pairs. Entries range from ‘++’="very

7

good separable” to ‘— —'="strong interferences”. The table is based on [92, p. 180].

starfield fails at incorporating this bandwidth; also, if the average attributes of the songs
of an album are taken, the result may be very misleading: If a pop album contains about
an equal amount of two types of songs, slow ballads and fast, upbeat dance tracks, then
the album would be localized among average fast/slow albums — although there is no track
in the album suiting this spot. Of course, it would be possible to stretch the icon in such
a way that it covers the attributes of all songs. While we have not tested this approach,
it seemed to us that the resulting overlaps would render the visualization very cluttered
and unreadable. Another problem is that people associate usually just a few songs with
an album; in some cases, these songs differ strongly from the remaining album. Thus,
even if the album is mostly homogeneous, it would still be localized at an unexpected and
seemingly wrong spot (if, e.g., a listener’s association with Evanescence’s “Fallen” is the
acoustic “My Immortal”, she would be surprised to find it in an area of fairly hard gothic
rock). Furthermore, if only albums are depicted, the need for an extra visualization of the
not shown contents behind an icon arises. Such detail-windows, as implemented, e.g., in
the FilmFinder (see Figure 2.1), would reduce the available space for the field — especially
since there should be at least one such frame for each user to avoid interferences. Worse, it
would make the interface more complex and thus violate the time-proven “KISS” principle:
“Keep it simple, stupid”??. All these considerations apply for depicting artists as icons
even more since here the bandwidth of different songs is even wider. Thus,; AudioPhield
should visualize individual songs as icons instead of albums or artists.

As a drawback of this decision, the number of icons on the starfield view will become
very large — since typical private music libraries contain at least 3000 songs. Also, the field
does not implicitly display a track’s affiliation to an album; this information, however,
supports casual browsing (see 3.1.1, page 14) and music talk, and needs therefore to be
visualized in another way. We propose for this purpose to link songs from the same album
visually by drawing lines between them. This method is chosen because a high number
of necessarily distinguishable values (each album represents here one value) needs to be
visualized; as Table 5.1 shows, connecting lines are well suited for this task. Of course,
visualizing the album belongings of all songs at the same time would lead to massive
clutter?®, so the album information should only be presented on demand.

22The original creator of this acronym is unknown. However, it was already considered well-known in
Lampson’s influential publication [53] from 1983

Z3For a collection with a albums and s songs per album on average, a * 2::_11 i lines must be displayed.
This would be 6600 for a common library of 100 albums and 12 songs per album.
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5.1.3 SOM instead of starfield placement

As a drawback for the starfield approach, it became clear that there are no two axes to
align all songs in the collection to in such a way that songs which are perceived as similar
are located close to each other — there are just too many dimensions in which pieces of
music can be alike or different. As a solution, we pursued the idea to let the user choose
the axes for herself from a small, high-level set of musical attributes. Thus, even if general
similarity is still not depicted, at least this visualization allows to specify in which regard
songs should be alike to be located together. To extract a set of attributes from the songs
that is at the same time complete (i.e., sufficient to at least satisfy the most common
sort-tasks), meaningful (the user has to understand the criteria) and possible to compute
could have been a complex — if not impossible — challenge. However, the approach is
unsuitable for AudioPhield because of another reason: Changing the axes causes a complete
reorganization of the entire interface. So, if more than user is interacting at a time (what
is definitely to be supported by AudioPhield), the browsing activity of all users is suddenly
interrupted, and they have to reorient themselves. As a consequence, the axes are either
very rarely changed to not annoy anyone (what renders the possibility to do so worthless)
or only one person can interact at a time — in this case, the application is effectively useless
for collaborative interaction. We will refer to operations of this kind, which must generally
be avoided in our task, as “disruptive” in the following considerations.

So, while the strength of starfield views, namely using spatial encoding for similarity,
should be preserved, the simple layout technique can not be used. As already discussed on
page 6f, mathematical means to reduce the dimensionality of the input data is not usable
here because pieces of music differ in just too many ways; if these are combined to only two
dimensions, the result is arguably close to meaningless. Also, techniques based on similarity
matrices like “space-filling curves” (see [71]) are unfeasible: The locations of each song is
unpredictable and may be completely different when the database is changed. While we
expect that additions or removals of songs occur rarely, it will nevertheless happen, e.g.,
when a new user joins the group and adds her music library to the interface. Strongly
varying layouts make it hard for the users to navigate their collections.

Therefore, we decided to use an approach based on a self-organizing map (see 2.1) to
place the song icons: When a SOM is trained, the algorithm builds up an explicit mapping
function. Thus, when new songs are added to the database, no recomputation is necessary
and the location of all previous icons remains the same. The visualization created by the
SOM is solely based on similarity measurements and offers no explicit axes. That is to
say that the similarity between songs reveals itself instantly and should therefore support
casual browsing, which necessitates similarity estimations (see 3.1.2), considerably better
than a starfield view. Figure 5.2 illustrates the differences.

On the other hand, the placement is not as transparent as the straightforward approach
of the starfield. So, when a user browses the interface, it is not a priori clear to her in
which way the music will change if she moves in a certain direction. To reduce this problem,
we devised some forms of additional navigation aids, as letting the user mark some well-
known songs to turn them into “beacon song”, which would have special graphics (e.g., a
halo) around them, or just “beacon points” which would augment some points on the field
with descriptive information in form of texts (e.g., “hard rock”) or symbols (e.g., a guitar).
Experiences with prototypes showed that actually the mental map of the field, which is
obtained quickly after a few minutes of browsing, suffices to navigate the library. So,
navigation aids were removed from AudioPhield’s design because the extra display space
they would occupy seems not justified by the benefit of additional orientation limited to
the first experiences with the system.

A SOM is usually initialized with random numbers. It is thus not possible to predict
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(s1)
° '()32) (s3)

song | speed beat-strength noisiness

(s1) | 0.25 0.70 0.70

(s2) | 0.27 0.09 0.72

(s3) | 0.28 0.69 0.10
(c)

Figure 5.2: TIllustration of the different localizations of starfields and SOMs.

(a) shows a starfield view of an fictive music collection with “noisiness”(X) and “speed” (Y) used
for positioning. Note, how the songs s1 and sl are closed very close together and thus expected to
be similar, although they differ strongly regarding “beat-strength” (see c)).)

(b) shows a layout of the same collection as in a) created by a SOM. Here, the distances be-
tween(sl), (s2) and (s3) allow immediate judgment of their similarity. Also, very similar songs
may be instantly found, e.g. (s1) and (s4).

(c) contains the attributes of three arbitrary illustrative songs.
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where which type of music will be located. So, the same problem as above arises because
the layout of the visualization changes after each restart of the application — albeit no
more after it was started. Yet, this problem can be minimized by pre-imprinting the SOM.
This imprinting should be globally defined, i.e., it should be identical for all installations
of AudioPhield. So, while the localizing process creates still individual results for every
music library, the general layout should always be about the same. In this way it should be
ensured that multiple users can still navigate the interface easily when the system displays
their libraries together. Otherwise, if one user inserts her collection into the visualization
of another user, the result may be at best unfamiliar and in the worst case unusable:
Consider, e.g., a user who listens exclusively to classical music and has therefore chosen
to imprint her SOM in such a way that classical music spans over the entire display; if
another library containing, say, mostly pop songs is to be placed by the same SOM, it
would get crammed into a single small spot. On the other hand, if the pre-imprinting
is too dominating, the SOM can no longer adjust to the peculiarities of a collection and
valuable display space would be wasted. So, a tradeoff needs to be found.

5.2 Visualize Music Libraries

The previous section exposed that music libraries should be depicted as song icons located
according to their similarity on a plane. While this outlines the general direction to go, the
interface is still far from defined. This section will introduce and discuss how AudioPhield
should look.

5.2.1 Focus and Context: Fisheye Views

Since the music libraries are to be visualized as one icon per song, the visualization will
easily contain several hundred icons. It is impossible for this amount of items to display
identifying information, i.e., at least artist name and title (see 3.1.2), for each song because
there is just not enough display space. Especially considering the fairly low resolution of
the target hardware (see section 6.1 on page 49), display space is a precious resource. The
usual solution for this problem in starfield-like views is to let the user browse the database
by providing her with means to zoom into the data and scroll the current cutout. Thereby
the number of details shown for each icon increases analog to the magnification. This
is possible because the spreading of the icons at higher zoom levels frees the necessary
display space. In this way, these “pan&zoom interfaces”, as they are often called, conform
to Shneiderman’s fundamental mantra of information visualization: “Overview first, zoom
and filter, then details-on-demand” [78|. Also, users are already familiar with this kind of
interaction as similar operations are to be performed in standard desktop software from
wordprocessors to image editors. However, this interfaces also exhibit some major flaws
that render them inappropriate for AudioPhield. First of all, they only offer overview
or details but not at the same time. So, when the interface is set to a magnification
that allows to identify individual icons, the immediate surroundings are not shown — let
alone possibly connected but remote items. Users can therefore hardly relate the currently
depicted data to the unshown remainder. Also, users sometimes get “lost” and need to zoom
out completely to reorient themselves. While these drawbacks might still be tolerable, the
following one is not: Pan&zoom interfaces are “disruptive” (as introduced above) because
every zooming or scrolling operation inevitably interrupts the interactions of another user.

So, another solution is to be found. We examined therefore so called “focus+context”
techniques, especially graphical fisheye views because they seem best suited for planar in-
formation visualizations. As the name suggests focus+context presentation techniques are
supposed to ensure that details in a focus region are perceivable while context information
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Figure 5.3: Screenshot of a prototype with a static, central fisheye lens. Depicted is a
test-dataset of random data.

is still available. Graphical fisheye views attempt to achieve this by a distorting transfor-
mation of the planar source data with a smoothly modified magnification factor. Figure
2.2 in section 2.1 on page 7 illustrates the effect on a picture. Our first attempt with this
technique was a static fisheye lens in the center of the screen, which affected the whole
screen. In contrast to a simple graphical fisheye, the distortion modified here the position,
size and amount of shown details for every icon, but not their shape. The database was
moved under this lens to browse the music library. See Figure 5.3 for a screenshot of a
prototype featuring this zoom lens.

The minor problems (for our task) of pan&zoom interfaces are hereby solved or at
least strongly diminished: Detail information is still displayed — and at the same time
the relation of an item to the immediate surroundings and the collection at large. Also,
the probability of users getting lost in the data is rather small since the system allows
permanent overview and the magnification occurs not in discrete steps but smoothly when
the field is moved under the lens. Yet, this approach is still disruptive: Since there is
only one focus region, it is impossible for two users to access different parts of the depicted
database. A possible solution would be to use one static fisheye for each user and duplicate
the library to allow them to browse independently. The system would therefore split the
available display space into two (or more) separate regions. We dismissed this approach in
part because of the scarce resolution of the target hardware, which would make it virtually
impossible to show details, such as labels for a song title, and a reasonable amount of
context without massive overlappings and clutter. Furthermore, it would equal a setup
where ordinary PCs are just located near each other, and the social and collaborative
possibilities of the tabletop display would remain unexploited.

The next, and for now final, approach uses multiple, small fisheye views on the same
dataset. Here, instead of moving the library under the lens for browsing, the fisheye lenses
are dragged over the field. Thus, the whole collection needs to be visualized at the same
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(a) Cartesian fisheye

7 AN

(b) polar fisheye (c¢) normalized polar fisheye

Figure 5.4: Examples of different graphical fisheye distortions

time because any form of utilizing means to show only a part renders the interface as
disruptive as the pan&zoom approaches. In this case, all needs should be satisfied: The
user interface follows Shneiderman’s principle and offers overview, zooming and details-on-
demand?*. Also, it is non-disruptive since there is no operation involved that changes the
layout of the whole visualization. Users may still interfere with each other, though, e.g.,
when fisheye lenses overlap each other. This kind of meddling is foreseeable in a collabora-
tive environment and can hardly be avoided. We expect users to develop social protocols
to minimize those disturbances — as was observed in several other tabletop environments
(see, e.g., 84, 81]).

The question, which kind of fisheye view AudioPhield should feature remains to be
answered. The choice between a Cartesian and a polar fisheye (see Figure 5.4) is already
determined by the fact that the lenses should only magnify a small region of the display and
needs thus to create a fluid transition between magnified and normal areas. This is only
possible with polar fisheyes because Cartesian lenses, which apply the magnification for
each space-dimension separately, have abrupt transitions at the edges of the lens (see Figure
5.4(a)). The Cartesian fisheye distortion had one advantage, though: If the lens is dragged
over an area of icons, their directional relation is preserved: Icons with the same x- or y-
coordinate are clearly placed on the same line, regardless of their magnification. In the case
of the polar fisheye distortion, icons follow a curved path when the lens passes them (see
Figure 5.4(b)). Thus, the directional relation becomes hard to estimate. This flaw might be
significant in starfield visualizations, but it is arguably negligible for AudioPhield because,

see, e.g., the album connecting lines below
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with the SOM-placement, the x- and y-axes have no clear meaning; so, little information
is obscured. That is not to say that directions had no meaning on AudioPhield! But these
directions are rather meaningful in terms of larger distances (e.g., a song is part of a rock
area but also close to slow pop songs) than in close proximities.

Another choice to be made is if the fisheye distortion should be normalized (see Figure
5.4(c)) as recommended by Sarkar and Brown in [73]. We decided to utilize the not
normalized, circular version in part because it integrates better with the remainder of the
interface, where circular shapes dominate (see below). Furthermore, this type resembles
more a real lens and should so appear more familiar to users.

However, while we approve the general concept of a fisheye distortion, we do not want
to limit the shape of focus areas to mere circles. In fact, some of the more advanced design-
and interaction-concepts for AudioPhield require arbitrarily shaped magnification regions.
Thus, the just developed circular fisheye lens serves as basis and starting point for the
magnifying distortions in AudioPhield.

Figure 5.5 illustrates the current state of the design process.

Figure 5.5: Illustration of an interface with fisheye views

Figure 5.5 also reveals another weakness of fisheye-views: It is rather hard to estimate
how the distortion affects individual icons. As a consequence, users may have difficulties
to judge the closeness of two songs, which is in the focus area one of the most important
information encodings. Our approach to at least diminish this problem is to make the
effects of the fisheyes as transparent as possible. Based on the recommendations in chapter
6 of Carpendale’s dissertation [13] we have therefore devised the following measures:

1. Color: The background of the plane is colored according to the magnification
strength. Therefore, the saturation of a color, which should not encode other infor-
mation anywhere in the interface to avoid misconceptions, visualizes the distortion
intensity. The visualization should use a fairly small maximal saturation to ensure
that the contrast between icons or labels in the focus area and the background does
not suffer.

2. Grid: The distortion of a regular pattern is easily readable. So, a grid, which is
also affected by fisheye distortions, is to be displayed in the background. Again, the
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Figure 5.6: Nlustration of an interface with visually emphasized fisheye views

danger of cluttering the interface arises. Thus, the grid should be painted subtle
enough to not distract from the actual visualized information and distinctly enough
to aid the user in comprehending the magnification.

3. Origin-lines: This technique shall especially improve the perceivability of the prox-
imity of magnified icons. Lines are displayed that connect the current position of
an icon in the distortion field with its original, undistorted position. Since lines are
already used to connect songs, which belong to the same album, it is necessary to
depict these lines differently. We use therefore color-coding as a simple solution.

With these measures the user will hopefully be able to understand which icons are
affected and in which way. Figure 5.6 outlines how the interface should look like at this
stage.

5.2.2 Information Encoded in the Icons

Now that the general layout of AudioPhield is defined, it is time to think about how the
song icons should look and what information they should encode.

First of all, a way needs to be found to identify a song on the field without actually
playing it. As seen in 3.1.2, the crucial information here is the name of the artist and
the song’s title. Since these attributes are necessary for browsing, they can not only be
displayed on demand; having to somehow interact with every single icon just to find out
which track it represents would make browsing quite cumbersome. Because it is on the
other hand impossible to show artist- and title-information for each icon, we couple the
display of these identifiers with the magnification inside the focus areas: They are only
shown if the magnification of an icon exceeds a certain threshold. To augment the outer
regions of the focus area, too, the technique is subdivided with a smaller threshold that
only triggers the painting of the title. We chose the title instead of the artist for this step
because we deem it more able to identify a song.

Usually, starfield-like views show simple labels containing identifying text above or
beneath the corresponding item. This technique is impracticable in AudioPhield because
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of a peculiarity of tabletop displays: Users can easily move to different positions around the
table — so, there is no universal direction texts can be aligned to. Many tabletop systems
provide the user with special interaction techniques to orient the contents of the interface to
their needs (e.g., [33, 35, 70]). Others rotate the content instead (or in addition) according
to its position on the table, assuming that every user interacts first and foremost with
the area of the tabletop immediately in front of her (see, e.g., [37, 77]). For AudioPhield,
we propose a different approach that makes the whole interface direction-less. Instead of
displaying the text oriented in a specific way, the system draws it on a circular path around
the icon. In this way, we eliminate the need to provide the user with interaction techniques
to reorient the content — which would have added unnecessary complexity to the interface
— and make the text from every perspective equally well readable. If an icon is central in
a focus area, it is surrounded by two text-circles, the inner one for the artist, the outer
showing the title. To improve readability, the radial strings rotate around the icon. So,
letters belonging to different songs should be better distinguishable here than in the static
case. See Figure 5.8 on page 36 for an illustration — compare especially 5.8(a) and 5.8(c).

This kind of display might also support the conversation between group members: Parts
of the interface oriented to fit just one user are considered as “private”. Because of that, it
is considered offensive to disturb another user’s private area — already looking into such a
region might feel impolite?®. Emotions of this kind should barely surface with radial texts.
So, it should seem acceptable for users to observe what other users are currently looking
at — and to comment on this music.

We entertained for some time the idea to use album art as icon graphics. As mentioned
in 3.1.2 these images could aid the identification of songs greatly. It would also be easier
to find songs of the same album — it could in fact make the connecting lines, which
currently show this togetherness, dispensable. On the other hand, the album art would
arguably only be of help in strongly magnified areas. Worse, it prevents any form of color
coding. Because this display dimension is highly valuable to present other data, the idea
was finally dismissed.

Information to identify music is now incorporated into the interface. However, there
are other important attributes to a song that should be visualized:

Ownership: One of the most interesting features of AudioPhield is that it is able to show
private music libraries from different people at the same time in the same visualization.
However, at this stage in the design process there is no cue present to let the users know
to whom a song belongs. We chose to use colors to encode the ownership because from
the remaining possible display dimensions (color, shape, size, motion, and texture) color
is the only possibility that should still be preattentive processable when the icons are not
in a focus area and thus quite small. So, users are empowered to compare their collections
— and thus their musical identity (see 3.2.1) — almost instantly just by estimating where
on the field icons of all users are equally distributed and where the icon densities differ
(see Figure 5.7). Therefore, the colors should be as distinguishable as possible. So, we use
colors with very different hues. It is to be expected that songs are contained in more than
one library. For these, the icons are divided like a pie-chart into equal parts so that there is
one — appropriately colored — part for each owner(see Figure 5.8(a)). Radial texts floating
around the icon should not be partitioned in the same way because their readability would
be damaged. Instead, the system displays the text with the average color of all owners.
The split-approach can only work when the song icon is magnified; otherwise, the icons are

%5 The influence of territoriality and orientation in collaboration around a table is discussed profoundly
by Kruger et al. in [49].
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too small and the partition is imperceptible. As solution in this case, non-magnified icons
are colored arbitrarily in the color of one of the owners. Then, for each additional owner
a ring enclosing the icon (and previous rings) is added. In this way, it should be clearly
visible that a song belongs to more than one user — it is, after all, now encoded as color
and size (see Figure 5.8(b)).

By

Figure 5.7: Ilustration of an interface containing two music libraries.
Note, how areas, where the libraries are very similar (A), are clearly distinguishable from
areas where one user has more songs than the other (B).

Recency of last playback: Section 3.1.1 and 3.1.2 revealed that users usually maintain
an active set of music, i.e. they play some songs very often compared to the remainder of
the library. Thus, AudioPhield should also visualize how recently a song was played. We
chose for this purpose the remaining channel of the display dimension color, saturation,
because the other still available display dimensions are inapt here: Visualizing the recency
of the last playback in form of shapes would limit the presentable values strongly (see Table
5.1) and seem counterintuitive. Furthermore, users would only be able to discriminate the
shapes when they are in the focus area. Thus, playing her working set would force a user
to scan the entire visualization looking for the right shape. Encoding playback recency by
modifying the icons size would not have these flaws. However, size-encoding is here not
advised because it is already used to signal the number of a song’s owners, and because
it must be limited to the non-magnified areas: The smoothly ascending magnification in
the focus scope of the fisheye distortion makes it virtually impossible to compare the size
of different icons. This problem is not present at the visualization of ownership above
because the size encoding is limited to unfocused areas. Thus, utilizing saturation is the
only way left to visualize this important data. Unfortunately, not the full range of possible
saturation can be utilized here because the lower the saturation the closer the color is to
gray. So, too low values make it hard to judge the color of an icon and thus the owner
of the represented song. If a song belongs to more then one user, the saturation coding
applies to the different parts separately; for the radial texts, the highest saturation is taken
to ensure good readability. Actually, AudioPhield does not use saturation here but opacity.
The effect is about the same but it is a little more pleasing to the eye. See Figure 5.8(c)
for an illustration.
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Rating: Most popular programs for music playback offer the possibility to rate a song,
usually on a scale from one to five. This data is obviously also valuable for the casual
browsing in AudioPhield. To visualize it, we chose a display dimension that should not
interfere with the amount of already integrated visualizations: Rotation. The icons, as
well as the radial texts around them (if present), spin around their center according to the
rating of the songs they represent: Icons of low rated tracks rotate very slowly while highly
ranked songs cause the icon to spin at a higher pace — but not so fast that it makes the
radial texts unreadable. Only clockwise rotation is used: Albeit mapping the ranking on a
scale ranging from fast counterclockwise movement for low ranked songs to fast clockwise
spinning for high ranked ones would enhance the discernibility of adjacent ranks; the speed
of the rotation, which is perceived faster and more easily than the rotational direction,
would visually couple songs of different ends of the ranking scale closer than, e.g., a song
ranked very high and one ranked medium — misconceptions would be inevitable. In the
case of multiple ownership, the average rating is used to determine the rotation speed
(see Figure 5.8(d)). This should support the users further in comparing their taste in
music: Fast-spinning dual-colored icons are a clear indicator for overlapping preferences.
Unfortunately, this visualization technique is rather subtle due to the small bandwidth of
usable paces. Also, it is nearly impossible to perceive the rotation of the tiny unmagnified
icons. Thus, the visualization is essentially limited to focus areas. Regardless of this
drawbacks, the spinning interferes barely with other visualizations and adds, because of
its subtlety, virtually no complexity to the interface. So, although it transports little
information, the visualization is kept as part of the interface due to its low cost.

The encoding of playback recency and rating in the presented way seems reasonable
to us and leans on observations of typical access-strategies for private music libraries (see
3.1.2) — but it is eventually arbitrary. It is entirely possible that a song’s rating is more
important to collaborative casual browsing than its playback history and should therefore
be visualized through the more articulate channel opacity. Also, there is another variable
not taken account of: The overall play count, i.e. how often a song was played since it
was added to the library. It is at this time not visualized because we assume that this
value correlates strongly with the rating — in fact, it might be a good idea to compute
a rating estimation automatically from the play count if a song was not rated before.
We could also use shape or texture as one of the few remaining display dimensions to
additionally encode this information. This would, however, interfere with the already used
dimensions and make the interface, which already seems rich enough of encodings, more
complex. Thus, all icons are drawn with the same shape, a disk featuring the familiar
“play”-symbol, because this shape fits best to the radial texts and once more pronounces
that AudioPhield’s interface is supposed to be direction-less. However, only user tests
can confirm that the above presented design decisions are sensible. Figure 5.8 presents an
illustration of the different encodings introduced in this section.

5.3 Enable Simultaneous Interaction on a Tabletop Display

The previous discussions defined exactly what kind of information is to be visualized in
which way and how the interface on the whole should look. However without means to
interact with this imagery, all of the techniques above are rather useless. This section will
introduce the different interaction concepts of AudioPhield. These concepts are designed
to handle some peculiarities of the system’s setup as good as possible:

1. Direct-touch: The tabletop display, unlike common interaction devices as mice,
allows users to directly touch any entity they wish to interact with. This enables the
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Figure 5.8: Mlustration of the different encodings incorporated in the icon display.

(a) Color codings to indicate ownership of one or multiple users in maximal magnified icons.

(b) Color codings to indicate ownership of one or multiple users in unmagnified icons.

(c) Color codings to indicate a song’s recency of playback from very (left) to not recent (right).
The icons are only moderately magnified, so only the title texts are shown.

(d) Encoding of song rankings through rotation speed (indicated by the radial arrows). (S1) and
(S2) are visualizations of the same song in different libraries. They differ in recency of playback
and rating. (S3) shows the representing icon for the song when both libraries are combined on one
interface.
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creation of interfaces that feel more intuitive and “natural” than common desktop
GUIs?®. However, reaching out and touching a spot on the table means that the
manipulated control is occluded by the finger and other interface parts by the arm.
Also, according to Buxton’s “three-state model of graphical input” in [10], direct-
touch screens are just “two-state interfaces”. This means essentially that the usual
distinction between a tracking-interaction (just moving the cursor) and a dragging-
interaction are impossible — there is no mouse clicking to determine the mode. Finally,
the interaction precision is rather low in comparison to traditional interaction devices
(see chapter 6.1).

2. Multi-touch: The hardware, on which AudioPhield shall operate, does not limit
interactions to a single point; in fact an arbitrary number of simultaneous interac-
tion spots is supported. To exploit the possibilities offered by this, new ways and
metaphors of interaction are necessary.

3. Table-top: The interaction-area is integrated in the surface of a table of noticeable
size. Thus, it is to be considered that a user may not be able to reach every part of
the interface from her position. While in our case the users are standing around the
table and can so easily change their position, the operation of the system would feel
cumbersome if they were forced to walk around the table to execute frequent interac-
tions. Finally, while people can support themselves with one hand on the rim of the
table to reach further out for single-handed interaction, this option is unavailable for
two-handed input. So, the maximum reach in the latter case is significantly shorter.

4. Multi-user: AudioPhield is designed to enable social browsing of music libraries,
i.e., it needs to cope with interactions that stem from different users and are not
linked to achieve the same goal as it would be the case in a single-user environment.
As a consequence, the interaction techniques need to be modeless?” because any
change of how current inputs are to interpret will most likely disrupt another user’s
activities. However, local modes, i.e., mode changes limited to small and clearly
identifiable parts of the surface, are possible.

5.3.1 Manipulations of Focus Areas

As section 5.2.1 presented, AudioPhield shall feature fisheye views to create focus areas
at arbitrary positions on the interface. Since browsing music libraries is the fundamental
purpose of the system, it is important that moving a fisheye area is as easy as possible.

We developed a number of different concepts to to create, move and destroy focus areas.
Of these, we will present three in the following.

ZoomFrames
This approach uses the button-metaphor known from common desktop GUIs. Because
of this close relation to usual mouse-controlled interfaces, it should feel familiar to novel
users. The focus areas are here enclosed in a circular frame that has two handle-spots
attached to it at opposing sides. All interaction with the ZoomFrame is executed via these
handles: To move the frame, the user needs to press a handle and drag it to a new spot
(see Figure 5.9).

Operating both handles at the same time allows controlling the size of the frame and
hence the fisheye. The strength of the distortion and the size of the frame are thereby
coupled. This coupling is essentially included because of interaction experiments which

26)GUD is the abbreviation of ’Graphical User Interface’
?7See [22] for a complete introduction to “mode” in interface design.
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Figure 5.9: Movement of a ZoomFrame.
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Figure 5.10: Tllustration of the coupling of frame size and zoom in ZoomFrames.
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Figure 5.11: Rotation and resizing of a ZoomFrame.

showed that users expect a larger lens to have a stronger magnification. The possibility
to adjust to some degree how wide the magnification spreads out a cluster of song icons
should also be valuable to enhance the legibility in areas of high icon density. To make larger
ZoomFrames also offer more overview, the size-magnification-coupling is loose enough that
the area magnified by the frame also depends on the frame size (see 5.10 for an illustration).

Touching and moving both handle-spots also allows to rotate the ZoomFrame. As with
a real lens, this has no effect on the distortion and magnification. However, to not waste
this natural interaction technique, we utilized the fact that one frame belongs usually to
only one user, and added two labels to the ZoomFrames that present artist- and title-
information to the song currently in the center — indicated by hairlines — of the frame.
The user can make the text on these labels optimal readable for her by modifying the
orientation of the frame. This technique should be quite valuable in areas with a high icon
density. Figure 5.11 outlines the presented size- and rotate-interactions.

To enable simultaneous browsing, the interface must not be limited to a single Zoom-
Frame. Therefore, users can create a new frame at any time by pulling it from one of the
creation fields, which are located at opposite corners of the interface. Since display space
is a scarce resource, and since this interaction should occur rather infrequently, two such
creation fields should suffice. Consequently, a function to destroy ZoomkFrames needs to
be integrated. For that, the user just has to minimize the frame: If its size falls below a
certain threshold, the frame is painted red. This appearance-change is necessary because
the minimizing triggered a new local mode: As soon as both handles are released, the
frame vanishes — while usually this input has no consequences. See Figure 5.12 for an
illustration.
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Figure 5.12: Interactions to create ((a)-(c)) and delete ((d)—(f)) ZoomFrames.

SoapSpots

For this interaction technique initially the metaphor of a water surface with small bub-
bles (the song icons) swimming on it was used. Where a soapy finger touches the surface,
the surface tension decreases and objects swimming in the water drift apart. The interface
was to act analog: Users could influence the distortion and magnification anywhere by just
touching the tabletop display at arbitrary places — the longer they let their finger linger at
the same spot the stronger and further reaching the magnification becomes. Then, when
an area receives no more input, it returns slowly to its original, undistorted state.

This initial design revealed some major flaws: The time a distorted area needs to return
to its normal state can just not be set right. Either, when the attenuation proceeds rather
slow, recently browsed areas are so distorted that it is virtually impossible to access them;
or, if it proceeds fast, the user needs constantly to touch the spot which she is currently
observing anew. Also, occlusion is a problem: Focus areas are obviously the parts of the
field that a user is currently interested in; unfortunately, to create the focus she has to
touch — and therefore occlude with her hand — exactly this region.

So, the concept was redesigned into the following: Users might still create regions of
focus — here called “SoapSpots” — just by touching an arbitrary point on the interface. In
contrast to the original approach, the summoned fisheye lenses are now mobile. When a
user touches the interface anywhere inside such a lens, it sticks to her finger and can be
moved anywhere. This solves, on the one hand, the occlusion-problem since a focus area
needs not to be touched centrally, and, on the other hand, the problem of inaccessibly
distorted display parts — after all, the lenses can simply be moved away. Figure 5.13
demonstrates the creation and movement interactions.

Unfortunately, the simple means to adjust the size of a SoapSpot ceased to exist with
this modification, too. As a replacement, the user can modify a lens’ size similar to the
procedure used for ZoomFrames: When there are two interaction points inside the area
of a fisheye, distance changes between these points are interpreted as scaling operations.
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Figure 5.14: Rotation and resizing of a SoapSpot.

Unlike ZoomFrames, SoapSpots accept input anywhere inside their contour and not just at
dedicated handle-spots. Again, the size of a fisheye lens and its magnification are coupled
(see Figure 5.10), for the same reasons as above. With SoapSpots there is additionally an-
other way to modify this magnification: Rotary two-pointed interactions directly influence
this factor. Thus, a SoapSpot can be set to minimal distortion for easy navigation or high
magnification to separate very close icons better. An demonstration of the just discussed
input types can be found in Figure 5.14; although the illustration shows two-handed input,
there is no need to do so — one-handed interaction with two fingers should work just as
well.

Tests during the implementation revealed quickly that SoapSpots require an additional
visualization of their interactive area: Users often intended to move SoapSpots but touched
outside of the input-accepting area of the spot and so created new SoapSpots instead —
much to their frustration. The visualization of the fisheye lens is informative of how strong
certain song-icons are affected by the distortion but due to its diffuse borders does not
suffice in hinting the margins of SoapSpots. Thus, the active area is now clearly surrounded
by a circle, which is additionally also color-coded to show the current zoom-level of the
focus area. All illustrations above regarding SoapSpots already contain this ring. See
especially Figure 5.14 for the ring’s color-coding.

Hlustration 5.15 demonstrates the way of interaction to remove SoapSpots from the
interface: Redundant spots can be combined with others. Therefore, just one SoapSpot
needs to be brought close enough to another (regardless if that spot is currently interacted
with) so that their boundary rings overlap to a certain degree — then they are combined
to one. If only one of the two spots was touched before the combination then the moving
SoapSpot assimilates the other one and the latter effectively just vanishes. Were both
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Figure 5.15: Combination of two SoapSpots.

touched, the combined SoapSpot’s size is determined by the distance between the two
touch-points and its zoom-level by the average zoom of the source spots. This interaction
technique is especially useful, if the user creates accidentally a new SoapSpot instead of
rescaling an existing one: She just has to bring her hands (or fingers, respectively) quickly
together before expanding them again. So, with little delay and without finger lifting
the intended interaction is executed, and the original mistake is corrected. However, also
unintentional combinations of SoapSpots handled by different users may occur. User tests
will have to show if emerging social protocols suffice to avoid this problem, or if ways to
prevent it need to be found.

Although this method to handle focus areas is still called “SoapSpots”, it incorporates
hardly any aspects of the original metaphor. Without this consistent and familiar linking
element, its learning curve might arguably be steeper in comparison to the initial concept

and the ZoomFrames. However, with the directly manipulable zoom-level, it also offers
more control over the fisheye lenses.

CookieDough

The interface colorfully named “CookieDough” is our most uncommon and innovative
approach to manipulate distortions and magnifications in AudioPhield. It has its name
from the underlying metaphor of a baking tray covered with a ductile dough flecked with
spots of chocolate dough. If dough of this kind is kneaded, the chocolate spots are distorted
and stretched. In the interface the whole screen corresponds to the cookie dough and the
song icons are the chocolate spots. Interacting with the virtual dough should thereby
resemble touching real dough as close as possible. So, when a user touches the surface at
any spot, the dough “sticks” to the interaction points. Now, any movement stretches and
condenses the virtual dough and so the song icons, too — distorted, magnified areas emerge.
Is the input stopped, the virtual dough relaxes and the regions of focus slowly vanish.

Unlike the previous approaches, the user is thereby not limited to using just the tips
of her fingers but may use the side of her hand (as illustrated in Figure 5.16) or even her
whole arm. Also, her interaction is not interpreted as punctual but the actual shape of the
touched regions are analyzed and used as a feature of the input.

With this immediacy and the consistent metaphor, the CookieDough interface should
feel more natural and accessible than any of the above presented interfaces. However, there
are drawbacks in this concept, too. Like in the original SoapSpots-interface the problem
of the relaxation speed arises: Too fast, and users are forced to redo their last magni-
fication input repeatedly, too slow, and areas stay inaccessible for too long. Obviously,
the metaphor — or rather the used tabletop technology — reaches here its limit: With real
dough, one could smoothen it by flattening it softly. The virtual system can not distin-
guish between strong and soft input, and can therefore not adopt this way of interaction.
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Figure 5.16: Nlustration of the CookieDough interface.

Another problem, however, caused us to not implement it for now: The central purpose
of AudioPhield is to support users in browsing music; the CookieDough interface on the
other hand, albeit apparently very useful to create arbitrary focus areas in a very plausible
way, seems hardly appropriate for this use case because it offers no way to just move a
focus area — instead a new one must created by two-handed input that is considerably more
laborious than drawing a single finger over the surface. Worse, the direct neighborhood of
a stretched zone is logically condensed and therefore harder to stretch — the user is forced
to obstruct her own browsing.

These for now unsolved problems and the fact that the CookieDough interface would
significantly complicate the implementation process due to the fact that we would have to
change the used computer-vision library (see section 6) extensively, caused us to exclude
it from the current prototype of AudioPhield presented in this thesis.

5.3.2 Music Playback Control

The above interaction techniques grants access to much information about a private music
library, including how a piece of music might roughly sound. But how the song actually
sounds remains a secret so far. This is to be changed in this section.

Simple Playback

Playing a song is the central part of any software that is supposed to handle music and
should therefore be made as easy as possible. In a desktop environment this would mean
that a song is played by simply clicking it once. In the case of direct-touch interfaces,
where no explicit click exists (see the list of peculiarities in the beginning of section 5.3),
the closest equivalent to a single click would be a single tap, i.e. a touch interaction with
minimal movement that lasts only for a short time (< 150ms). This was also our first
approach: A single tap on an icon triggered the playback of a song. However, continuous
testing during the implementation showed that a tap differs too little from other short
interactions. Thus, unintended playbacks happened frequently and let to much frustration
— understandable: After all, the mistakenly played song did usually not match the user’s
current mood and was therefore the “wrong music” (see section 3.1.2). In addition, issues of
the tracking of user input worsened the problem: Occasionally the tracking is lost, i.e., one
dragging movement over the interface is interpreted as two consequent inputs (see chapter
6.2.1, page 51). So, if two losses happen in close succession, a phantom input occurs that
looks to the system exactly like a tap.
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Figure 5.17: Illustration of the double-tap interaction to start playback of a song.

Thus, while the playback of music should be easy to trigger, it is also important that it
is hard to trigger unintentionally. Our idea to meet this requirement is to use double-taps,
i.e., two short taps, as defined above, with a short break of less than 500ms between them.
The maximal timespan between the taps was chosen arbitrarily but seems reasonable: It
should be short enough to not occur incidentally, and long enough to be easily executable.
Tracking losses could still mimic this interaction, but this is very unlikely because three
tracking losses in close succession are rather rare. But when they appear, then usually
during faster movements — and two short taps in different spots are not confused with a
double-tap.

Since there is no clear tactile feedback if a tap was recognized by the system, at least
clear visual feedback seems recommended. AudioPhield displays therefore a pattern of
concentric circles around a tap. These circles stay visible but shrink for as long as a second
tap would be interpreted as the second part of a double-tap. A successful double-tap
is not visualized in any way because its effect is clearly visible: If a song is currently
played, the associated song-icon is painted with a yellow disk around it to mark its special
function. This disk might not suffice if the user moves her focus area away. Thus, the
icon of the playing song becomes also the center of a subtle visualization of the playing
music in the background, and its magnification can not drop below a certain threshold.
These measures should ensure that the users are never in doubt which song is currently
playing and where it is to be found on the interface. As another change, the symbol on the
icon changes from “play” to “pause”. This indicates already what a second double-tap on a
playing song provokes: The song is paused and the icon switches back to the “play”-symbol
because another double-tap resumes the playback. See Figure 5.17 for an illustration of
the playback-triggering interaction.

Scan-Playback

Sometimes, a user will not recognize a song solely by its artist- and title-information, e.g.,
when a song is new or does not belong to her library but to the collection of another
user, which is visualized on the same interface. Also, she might just want to orientate
herself on the field and just listen to any song in an area to learn which kind of music is
to be found there. In these cases, users are only interested in listening briefly into a song
instead of a full playback. To meet this interaction need, AudioPhield features a special
scan-playback function. By tap-holding, i.e., touching a position for a specific minimum
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time?® without moving the touch-point, a song icon the scan-playback is activated. Now,
the song is played, beginning at a third of its duration to skip intros, as long as the finger
is not released. If it is released, the playback stops instantly. After the activation time
of the tap-hold interaction there is no need for the touch-point to stay in the same place
since it was already identified correctly. Thus, it may be moved freely — and needs to be
for the winding interaction described below.

So, there are now two ways to play music for different purposes in AudioPhield: One
serves to play a song the users actually want to listen to, while the other should only
provide a glimpse of a song for browsing- and navigation-issues. Both kinds will occur
during a usual interaction session — and in most cases at the same time, as it is to be
expected that some music plays all along, maybe in the center of the users’ attention,
maybe just as background noise (see page 16f). Thus, scan-playback should interfere with
the full playback as little as possible. In the current design, this is achieved by pausing
the primary playback during a scan-interaction and resuming it instantly afterwards. We
implemented also other possibilities, in which both songs are playing at the same time: E.g,
the fully playing song is just muted, or the songs sound from different speakers. However,
in preliminary tests, the results of these approaches seemed rather annoying because the
songs could not be clearly distinguished. On the other hand, it was appreciated that these
solutions sound less “skippy” than the pause/resume-approach. Therefore, more profound
testing is necessary.

Also, it might happen that two users want to use the scan-playback function at the
same time. We found two solutions to solve the conflict: Firstly, the earlier playback is in-
terrupted and terminated by a new one; secondly, new playback attempts are delayed until
earlier scans are finished. The first alternative is used as default in AudioPhield because
it is consistent with the full playback and it does not disappoint a user’s expectations by
a mode change: A tap-hold interaction triggers scan-playback, regardless of other circum-
stances. In any case, we expect conflicts of this kind to appear rarely because of emerging
social protocols to avoid them in the first place.

The visualization of the tap-hold interaction is similar to the visual feedback of a
double-tap: It is also indicated by a pattern of concentric circles. In contrast to the latter,
the pattern here is differently colored, and it is growing until the interaction is complete
or aborted by releasing the touch-point or moving it. Both differences should ensure that
the tap-hold interaction is understood as similar to the double-tap but also prevent mix-
ups. The visualization of a scan-played song equals the one for fully played songs with the
difference that now the disk under the song is gray instead of yellow. Also, the playback
starts here already in the “seeking-mode” (see below). While this is technically not part
of the scan-playback-visualization, it serves as a further visible indicator. Figure 5.18
illustrates the discussed tap-hold interaction.

The same figure also demonstrates a case of “details-on-demand”, as postulated by
Shneiderman’s principle (see paragraph 5.2.1): The lines that connect songs of the same
album appear only when a song is fully- or scan-played (see panel (¢) in the figure). Thus,
we interpret — hopefully reasonably — the playback of a song also as a wish for additional
information that triggers the “on-demand” functions. At this time, these functions are
limited to the aforementioned lines — in the future, however, further functions might be
added if user tests reveal according needs.

In-song Seeking
To keep the user interface as simple as possible, there was initially no function to jump

28Tests during the implementation indicated 750ms as a good value. Shorter time spans caused frequent
misconceptions, while longer spans slowed the interaction unnecessarily.
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Figure 5.18: Illustration of the tap-hold interaction to start scan-playback.

(a) after complete “tap-hold”

Figure 5.19: Tllustration of an in-song seeking interaction.

to a specific position in a song included in the interface. The first preliminary tests,
however, demonstrated clearly that it is urgently needed. The typical cases of need for
in-song seeking were to get a better overview of an unknown song, and to present the
best, worst, unusual, or otherwise special part of a song to another member of the group.
Since these purposes resemble the information need the scan-playback was developed for,
the in-song seeking function is triggered in the same way as the latter: As soon as the
tap-hold interaction on a song-icon — regardless if the icon presents a track already playing
previously or just started in scan-mode — is complete, the seeking function is activated.
A green disk sector, which visualizes the current playback position, appears. Now, when
the touch-point of the tap-hold interaction is moved into this disk, the playback jumps to
the indicated place. The full disk represents thereby always the duration of the complete
song, i.e., the timespan represented by one angular unit varies with different song lengths.
To enable input of high precision, the user can move the controlling touch-point as far
from the song icon as she wants: Logically, with increasing distance, the angular change
caused by the same spatial translation decreases. Figure 5.19 illustrates the necessary
interaction to jump in a song first to the middle and then to about three quarters of the
playback duration.
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(a) (b)

Figure 5.20: Nlustration of an interaction to raise the volume.

Volume Control

The fact that not all songs are recorded at the same level, and that some songs just need
to be played louder to make them sound right, demonstrates that AudioPhield must feature
a possibility to adjust the playback volume. We developed therefore a “VolumeWidget”, a
control solely dedicated to visualize and modify the current playback volume. To operate
it, the user has to activate the — again circular designed — widget by touching it anywhere.
Then, the widget switches to its active mode and is painted notably larger than before for
as long as the input lasts. It is now also surrounded by circle that indicates maximum
volume. The space between the outer rim of the widget and this circle is used as input
area to specify the desired volume: The further this area is touched by a different finger
from the center, the higher the volume is set. A disk, which grows from the center to the
touch-point, serves as visual feedback for the current position. As an additional cue, the
volume is also visualized by the color-coding of the disk, which uses a scale from green over
yellow to red. Figure 5.20 demonstrates the interaction necessary to change the playback
volume. In the illustration, two hands are used for interaction; however, there is no reason
why the same input should not also be executed with just one hand, e.g. with thumb and
index finger.

This two-step process to adjust the volume may seem more complex than it needs to be,
but there are good reasons for this design. Because no display space was to be wasted for
an extra area to control the volume, the VolumeWidget is located as a movable entity above
all other visualizations. It needs to be movable because if it is fixed anywhere, it might not
be reachable for all users from their position and they would be forced to walk around the
table every time they want to adjust the volume. Also, it might occlude some song icons.
To move it, a user has just to touch and drag it to any position. The movement is the
simpler interaction because of its error tolerance: If the widget is moved unintentionally,
there is no harm done. If the volume is unexpectedly changed to its maximum by mistake,
it might at least startle the users — and if it happens more often, annoy them. The two-step
process above is far less likely to be executed incidentally than just touching the widget.

Although AudioPhield is supposed to be a multi-user interface there is yet only one
VolumeWidget. This is due to the fact that there is also only one playback volume that
affects all people in the room equally. To have more than one volume control would
therefore just lead to confusion and occupy valuable display space.

As an alternative, we implemented a widget that interpreted angle-changes between
two touch points on it as amounts of which the volume is to be changed. This design
was inspired by volume knob found on many stereos and thus should feel familiar. Some
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drawbacks, however, make it seem inferior to the above introduced concept: To avoid
undesired changes (like sudden jumps to maximum volume), the rotation-angle necessary
to modify the volume by a given amount should be chosen quite large — which may cause
users to knot their arms or distribute their wished change to multiple interactions. As a
solution, the widget could be modified in such a way that the touch-points no longer need
to stay on the widget but may reach farther out. Then, however, a single tracking loss —
which is more likely since two touch points are involved — terminates the gesture. So the
user has to bring her fingers or arms together again to re-initiate the volume-changing
interaction.

All the above mentioned interaction techniques are limited to browsing the music li-
braries and playing single songs. Many functions found in common music players are not
included. For example, it is not possible to modify the rating of a song. This possibility
was omitted because it is impossible to identify users; so, users might alter the ratings
of songs that are not part of their collection — possibly against the will of the rightful
owner. Also, there is no way to create or maintain playlists. In an environment, where
users are interacting with music libraries and playing songs all the time, there just seems
to be no need for playlists — it would probably be changed before the first song in it was
fully played. In a single-user scenario, however, the used visualization could be of great
value: A playlist could be created by simply drawing a line on the field??; or, one could
draw a circle around an area of songs to be played in random order. Future versions of
AudioPhield might include functions like that.

29 An exemplary implementation of such a function can be found in [39].
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6 Implementation

After the previous chapters decided what AudioPhield is to be and why, this chapter
examines how we implemented the result of this design process. The section is thereby
structured as follows: Firstly, the technology and concrete setup of the used tabletop
hardware is presented. Then, we discuss general issues of the software system as the
used libraries and the overall architecture. This is followed by a section about selected
implementation aspects, which address interesting or unusual solutions to some of the
core-difficulties implicated by the design.

6.1 Hardware Setup

The touch-sensitivity of the used tabletop display is enabled by a technology called “frus-
trated total internal reflection” (short: FTIR), which was used for fingerprint scanners
before Han presented its value for creating touch-screens in [32]. FTIR utlizes the effect
that the reflection- and refraction-properties of a material are determined not only by its
own refraction index but also by the refraction index of the surrounding medium. An array
of LEDs emit infrared light of a preferably narrow bandwidth of wavelengths into the side
of an acrylic pane. This light meets the interior surfaces of the pane in such an angle that
it is totally reflected. Thus, the pane looks black to a infrared camera mounted below.
If now the acrylic glass is touched anywhere, i.e., if the outer medium is replaced by one
with a higher refraction index, the reflection in this spot changes from total to diffuse,
and the light is scattered in all directions — including through the opposite inner surface
of the pane. So, the spots where the glass is touched light up and are clearly visible to the
infrared camera (see Figure 6.3(a)). In this way, the FTIR technology delivers the basis for
computer-vision algorithms to find and track interaction points with high-contrast images
of where a pane was touched. See Figure 6.1(a) for an illustration of the principle.

Total Internal
Reflection

Acrylic Pane

{ Vv Scattered
Light

(a)

Figure 6.1: Frustrated Total Internal Reflection:
(a) Schematic illustration of the principle (illustration according to [32])
(b) photo of the LED-array and the overlaying foils

To make this construction not only a touch-sensitive surface but a touch-sensitive
display, two layers of foil lay on the pane. The upper foil serves as projection screen for a
digital projector mounted below the acrylic glass, and it provides interacting users with
a pleasant surface feel. The lower foil makes sure that the display is still touch-sensitive:
It is rather soft and creates, when pressed on the pane, diffusion spots of similar clarity
as the ones created by skin. As a fortunate side effect, this foil also filters infrared light
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Figure 6.2: Measures (a) and photo (b) of the used tabletop device.

coming from the environment and enhances so the precision of the finger-tracking by
reducing background noise. Figure 6.1(b) shows the described setup of acrylic glass,
LEDs, and sheets of foil.

The tabletop display used for AudioPhield utilizes for the pressure-point recognition
a gray-scale camera, which feeds its data to the computer via a FireWire connection. It
delivers 60 frames per second at a resolution of 640 x 480 pixels. However, due to a
barrel shaped distortion in the image caused by the lens, the optical resolution is not
completely usable for tracking purposes. The display image is created by special projector,
which is able to spread out the image at close distances thanks to specially shaped mirror
mounted in front of the lens. Its native resolution is 1024 x 768 pixels. However, due to
image adjustments handled not optically but by reshaping the image per software, and
due to occlusions as a result of the projector’s mounting position, the usable resolution
adds up to about 950 x 700. A closed box with a height of about 89 cm contains all the
presented equipment. The touch-sensitive display measures about 99 x 74 cm and is located
asymmetrically towards one of the short sides of the base area. A detailed scheme of these
measures can be found in Figure 6.2(a). The box itself stands centrally in a room against
a wall. Thus, users have to stand around the tabletop device and access the touch-area
from three sides. This area’s diagonal is larger than the average user’s reach; so, users
positioned at an edge of the table can not operate the whole interface. The rim around the
sensitive field is with 10.5 cm broad enough for them to rest their arms there and support
themselves while reaching out farther on the interface. See Figure 6.2(b) for a photo of the
device.

The camera and the projector are connected to a usual desktop PC featuring a dual-
core CPU and a middle-class consumer-grade graphics card. All computations necessary
for AudioPhield are executed on this hardware. It is powerful enough to ensure that the
frame-rate during usual interaction with AudioPhield is at all times above 30, and thus
high enough to make the interface seem smooth and fluid.

6.2 General Software Design

This section is concerned with the used technologies and libraries as well as with Audio-
Phield’s general architecture. Also, major components and classes are introduced.
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6.2.1 Used technologies

AudioPhield is completely written in C#. There are various reasons for this choice, includ-
ing type-safety, object-orientation, native compatibility to C/C++, performance, garbage-
collection, and, last but not least, our extensive previous experience with the language.
Also, Microsoft’s excellent VisualStudio (|[@13]) provides a convenient and effective devel-
opment environment for this programming language.

Apart from this basic choice, AudioPhield relies on a number of other libraries, too.
The following is a complete list of these libraries along with short descriptions of them:

XNA A lot of different meanings are combined by the term “XNA”3? including web ser-
vices, or communities. But at its heart it is a platform to develop games for Win-
dows PCs and “Microsoft Xbox360” consoles. XNA provides a well structured API in
form of a class hierarchy (for both, C# and VisualBasic), by which two- and three-
dimensional graphics can be created and manipulated. On PCs, XNA is thereby
essentially a wrapper: Most commands are mapped to DirectX-calls and executed
by this high-performance graphic library. Thus, if the according graphic chips are
available, most XNA-operations are hardware-accelerated [@15].

XNA GameStudio 2.0 The “XNA GameStudio 2.0” by Microsoft (short: GameStudio)
is supposed to ease the entry into game development as much as possible and com-
prises therefore skeleton projects, which get tightly integrated into the VisualStudio,
a rich library of utilities for game development, and a set of examples and tutori-
als [@14]. Its key value for AudioPhield is the automated handling of default tasks in
a 3D program: A GameStudio-project automatically includes a powerful subroutine
to load and maintain content in the video memory. Also, a central game-loop, which
calls the user’s update- and rendering-code, hides all timing issues.

Touchlib The open-source library “Touchlib” was especially designed for creating vision-
based multi-touch surfaces [@21]. It handles thereby the complete image-processing
and interpretation, from accessing the camera to tracking interaction points. To find
and track touches — which appear as blobs in the camera image —, it preprocesses
the image to separate the blobs from the background. Therefore, it transforms the
image in several steps, like background reduction or contrast enhancement. Figure
6.3 demonstrates the effect of this process. Then, it identifies blobs and tracks them
in the image stream coming from the camera. Finally, the centers of the blobs are
calculated, transformed by a matrix-grid to cancel out lens distortions, and sent to
listening programs in form of x/y-coordinates (normalized to [0;1]) and an identifying
number for each blob. The previously mentioned tracking-losses or -interruptions
happen here: The ID of a blob changes during its motion. AudioPhield uses currently
a C# wrapper to start and access Touchlib directly. A earlier implemented approach
used sockets for the communication and worked just as well — albeit with more
overhead.

SmartSDK As it was initially unclear if the above presented table would be available for
this thesis, AudioPhield was also targeted on a horizontally mounted SMART Board
by SMART Technologies [@28]. Therefore, it incorporates the SmartSDK to access
interaction events detected by the proprietary SMART software. While it is not
advised because of the limit of only two simultaneous touch-points, AudioPhield
may still be used on any SMART Board.

30«XNA?” is an arbitrarily chosen name and not an acronym. However, this description became a recursive
acronym itself: “XNA’s Not Acronymed”.
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Figure 6.3: Image processing in Touchlib:
(a) shows the image captured by the camera.
(b) shows the same image after several image processing steps.

BASS The “BASS” library in version 2.4.1 by “un4seen developments” [@31]| handles most
music issues in AudioPhield: It is responsible for decoding songs into floating-point
PCM data3! for attribute extraction, and for playback of pieces of music during a
running AudioPhield session. Among the many available music handling libraries it
was chosen because it is very robust, flexible (a plug-in system enables the playback
of virtually any file-format music is stored in), and easy to integrate into AudioPhield
thanks to a C#t-wrapper named “Bass.Net”. Also, BASS may be used at no charge
in non-commercial projects. However, while it is able to read tags affixed to a music
file acceptably, there is no function included to write tags.

AudioGenie The library “AudioGenie” [@30] in version 1.0.4 fills the function gap of
BASS. This freeware handles reading and writing of tags reasonably well and offers
a very clean API?2. The library comes as a single .dll-file with a C#-wrapper for
convenient access. AudioGenie supports of the widespread digital music formats only
.mp3, .wma and .ogg yet — but this may change in future versions. Since AudioPhield
needs to store data inside a song’s tag, AudioPhield is currently also limited to these
file-types.

6.2.2 General Architecture

AudioPhield consists at this time of roughly 85 classes and interfaces, which hold
together close to 15,000 lines of code (comment and blank lines not included). So,
it should be clear that an extensive description off all involved classes and found
solutions is far beyond the scope of this thesis. We will therefore limit the following discus-
sion of the system’s architecture to include only the most prominent classes and data-flows.

AudioPhield’s software architecture is designed to be very flexible and expandable.
While most classes are loosely coupled towards each other, the following entities can be

3'PCM stands for “Pulse-Code-Modulation”. It means essentially the transformation of an analog signal
into binary data by sampling the signal. PCM data is thus the discrete approximated form of the original
signal.

32«APT” is short for “Application Programming Interface”. As the name suggests, it is the interface a
program or library offers to foreign programs for mutual access.
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considered AudioPhield’s core. They are ordered roughly by their position in the class-
diagram in Figure 6.4.

e AudioPhield: This class is the central control entity. It handles acquisition and
dispatching of input-data. It is also the main factory to create the arrangement of
the remaining classes.

e Renderer: The Renderer is responsible for general painting issues. It handles the
access to the graphics hardware and contains update- and render-loop. In the render-
loop, all IRenderables are called to “drawYourself()” in a sequence that determines
their z-order.

e IRenderable: Every object that is to appear on the interface (or that needs to be
called during the update-call that precedes the rendering) has to implement this in-
terface and to register itself at the renderer. While some IRenderables’ sole purpose
is to enrich the user interface (e.g., the EffectLayer), others are not even painted,
like the Attenuator that smooths the icon’s movements.

e SongIconsMap: This class controls the positioning and drawing of the SongIcons. It
holds and maintains the distortion grid (see below).

e SOMplacer: The SOMplacer implements the self-organizing map used to locate
SongIcons. It is loosely coupled through an interface that contains only few methods
and may thus easily be replaced by a different algorithm.

e SpringAdjuster: The spring-algorithm presented below is implemented in this class.
Because the computations of the SpringAdjuster would damage the frame-rate no-
ticeable, they run in a separate, low-priority thread.

e SongIcon: This class serves two purposes. It represents a song with all its attributes
as storage class, and it handles the song’s appearance as icon on the map.

e InputHandler: There are a number of classes that inherit from this abstract class.
It is an InputHandler’s responsibility to collect input-events from a specific source
and to convert them into the general InputObject(not shown in the diagram) used
in AudioPhield. InputHandlers have to buffer all events until they are explicitly
requested during the update-step. The above presented Touchlib and SmartSDK are
wrapped in an InputHandler and further sources of input may easily be added the
same way.

e InputInterpreter: Classes inheriting from the abstract InputlInterpreter
are sinks for InputObjects provided by the InputHandlers. They judge
for themselves, if an input needs to be interpreted by them. The simple
InputOverlayInterpreter, which visualizes subsequent InputObjects as lines, or
the more complex ZoomFrameInterpreter, which completely implements the Zoom-
Frame interaction-technique presented in 5.3.1, are examples of InputInterpreters.

As mentioned, this list only outlines the most prominent classes. For the sake of clarity,
the complete factory-system, which builds up the different components of AudioPhield, or

the song playback infrastructure are here omitted.

The input acquisition and processing is executed in every update-call, i.e., once per
frame. It follows a simple principle illustrated by the following pseudo-code snippet:
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input = handler->getInput()
if input then

completelyInterpreted =
else continue

else
continue

© 0 N O W N -

for each handler in alllnputHandlers

for each interpreter in alllnputInterpreters
interpreter->interpretInput (input)
if (completelyInterpreted) then break

So, the handling is essentially just a nested loop in which all interpreters sorted by
their z-order decide for themselves if an input should be interpreted and executed by them,

and if the input is completely handled, i.e.,

if subsequent InputInterpreters, which lie

possibly behind the current Interpreter, should also be allowed to handle the input.

o~ AudioPhield - DataHandler
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Fugazi: Turnover (Repeater)
Air: Venus (Talkie Walkie)
Queens of the Stone Age: You Knowlll

Modest Mouse: Breakthrough (This [l
Elliott: Calm Americans (False CatHEl

\Ween: japanese cowboy (Paintin' thilll
Social Distortion: Let It Be Me (SociEll

Interpol: Obstacle 1 (Turn On The Ell
Faith No Mare: Ricochet (King For 4l
Mine Inch Nails: Sin (&nd All That CEll
Smashing Pumpkins: Siva (Gish) [l
Harmonia Diez: A mi pueblito (musiEEl
Melvins: Annum (King Buzzo)

Modest Mouse: Convenient Parking il
Modest Mouse: Custom Concern (THE
The Roots: Distortion To Static (Do §@
Sunny Day Real Estate: Every Shinifig
Faith No Mare: Last Cup Of Sorrow [l
Nine Inch Nails: March Cf The F'|gs.
Interpol: Narc (Antics)

Interpol: NYC (Turn On The Bright L.
Auf Der Maur: Real & Lie (Suf Der MEH
Melvins: Respite (Dale Crover) H
Air: Run (Talkie Walkie) [ |
Meil Young: hey hey, my my (GreatdSl
Melvins: Hurter (Dale Crover) H
Horace Andy: Leave Rastaman Alordgll
Melvins: Montreal (Prick) | |
Fugazi: No Surprise (End Hits) [ |
Zero 7: OVER OUR HEADS (\when R
Melvins: Revolve (Electroretard) [l
Dennis Brown: sitting and watching ¥
Melvins: Spread Eagle [Singles 1- 180
Foo Fighters: Times Like These (Df81
Metric: Too Little Too Late (Live It Ciill
Ben Harper: Touch From Your Lust [l

Figure 6.5: Screenshot of the Datallandler.
The upper right boxes display the extracted values; these may also be changed
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6.2.3 The DataHandler

One aspect shown in Figure 6.4 is still to be discussed: The Datallandler. This package is
essentially a program of its own that operates almost completely isolated from the rest of
AudioPhield — both parts of the system may even run solitary. The DataHandler enables
users so select which songs are to be added to the similarity-based visualization on the
tabletop. As soon as songs are associated with a user (the “+”’-button in screenshot 6.5),
the program decodes the song looking for tags. If a song was previously scanned by
AudioPhield, custom tags are found in the song, which include information about play-
count, the last position the according song-icon was placed, and a triple of extractor-name,
extracted value and extraction accuracy for every extracted dimension (see below). So, the
song can be processed by the SOMplacer and added to the field. If tags of this kind are not
found, the song is considered unknown. Then, the extraction process starts automatically
and — if the user wishes — the newly computed values are stored inside the songs themselves
as tags. See Figure 6.5 for a screenshot of the DataHandler.

The DataHandler is, for the most part, the same framework for music information
retrieval that we have presented in [75]. The complete architecture and most of the plug-in
algorithms (as well as some new — as the web-extractors discussed below) from there are
incorporated in this package. The only essential novelty is the new, multi-threaded GUI
that hides the complete extraction process while offering about the same capabilities (apart
from the additional buttons used to trigger song-placement). Therefore, we do not present
this package here but refer interested readers to [75|, where an exhaustive description of
these matters can be found.

The coupling between DataHandler and the above presented part of AudioPhield is
extremely loose: The communication is one-way only (from DataHandler to AudioPhield)
and limited to simple calls like “addSongAutoPlaced(...)" or “placeSongManually(...)”. The
only class both parts of AudioPhield use is the SongIcon.

6.3 Selected Implementation Aspects

As stated above, AudioPhield is by now too voluminous to be discussed in this thesis com-
pletely. However, some of the more interesting or unusual aspects of the implementation
deserve to be discussed here. We have chosen therefore the used (and not used) algorithms
to obtain information about songs necessary for the similarity depiction, our implementa-
tion of the Kohonen map, a spring-algorithm used to enhance the icon layout and finally
the technique to create arbitrary free-form fisheyes.

6.3.1 Music Information Retrieval

The user’s experiences with AudioPhield depend heavily on the quality of the similarity-
based icon placement. This again can only be as good as the data used to compute the
similarity. In the following, we will discuss two fundamentally different approaches to
obtain this necessary data. Their task, however is the same: Gather information that
correlates with features used by humans to judge how a piece of music sounds, and express
it by two single values normalized to the interval [0; 1]. The first value encodes the feature
itself (e.g., '0.2’ for a fairly slow, ’0.9” for a really fast song when the feature is “speed”).
The second value serves as metadata for the first one: It contains the estimated accuracy
of the first value. So, if the ’0.2’ in the example above is accompanied by a low accuracy of
’0.1°, the algorithm means — to put it crudely — “I guess the song is fairly slow but actually
I don’t know”. This meta-data can be as valuable as the data itself for the process of
similarity computation as it prevents the harmful inclusion of faulty results.
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Content-based Data

In our initial design, AudioPhield’s similarity estimations were supposed to rely entirely
on data extracted from the music itself. Thus, many different algorithms were devised and
implemented following the suggestions of various popular papers in the music informa-
tion retrieval community — unfortunately with little success. This stems in part from the
following problems with real-world music files:

e Recording: Pieces of music are to a good part shaped by the studio in which they were
recorded. Differences in the strength of applied compressions or different equalizer
modifications complicate, e.g., estimations of how “bass-dominated” a song may be.

e FEncodings: Digital music is encoded by a range of programs. Virtually all commonly
used codecs encode the music lossy by applying psychoacoustical insights, i.e., they
omit sound information people usually are not able to hear. However, algorithms
assuming a complete wave spectrum produce wrong results.

e Segmentation: Usual pieces of music tend to be not completely homogeneous. For
example, refrains are in most cases more melodious than the strophes. Inconsistencies
like that tend to confuse algorithms, which usually postulate uniform input.

e Limited Scope: Few algorithms are capable to create valid results for every kind of
music — the bandwidth is just too large: Looking for energy peaks in lower frequency
regions may be feasible for making suppositions about rhythmic patterns in pop
music; for jazz, however, the results are worthless.

However, these problems hardly suffice to explain the the poor performance of our
algorithms. It seems that the “right” way to teach computers to listen to music like humans
do — or at least to identify the features people use to appraise pieces of music — are still to
be found. We came to this realization because of the following reasons:

a) Missing Encoding Robustness

Many of the current approaches in Music Information-Retrieval use a set of (rather
easy to compute) low-level attributes. After one of our attempts, which was to work
similarly by training a neural network to classify songs according to a feature set
recommended in [87], produced unrepeatable results, we conducted an informal study
on the influence of different encodings on selected low-level features®*. Therefore,
we read out the uncompressed PCM data from CDs as a reference value. Then,
we encoded the same data with different popular codecs, such as LAME [@1] or
libvorbis [@33]. After that, the files were given to AudioPhield to extract the chosen
features and save them for later evaluation. The diagrams in Figure 6.6 show an
excerpt of the results. Obviously, the encoding has a tremendous impact on these
features. Even the values extracted from the mp3-encoded songs differed sometimes
greatly, although they were encoded by the same program with similar data rates.

Obviously, since AudioPhield uses BASS to decode and not the same codec as the
ones used to encode the files, these artifacts could have been produced by BASS.
Therefore, we stored the PCM data decoded by BASS and played it back to compare
it with the original file from the CD. At least to our unschooled ear, there was no

33These features were the average and variance of: ZeroCrossings, Spectral Centroid, Spectral Rolloff,
Spectral Flux and LowEnergy ratio. For all computations were the same usual window widths and options
used. The implementation of the used algorithms can be found in [75].
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Figure 6.7: Screenshot of the music annotation tool.

perceivable difference — and certainly no difference of the same magnitude as the
differences, e.g., in SpectralCentroid values.

So, the influence of the codec on various low-level features seems to be high enough to
rival the influence of the data we actually want to obtain. Thus, without limiting Au-
dioPhield to PCM data read directly from CD to achieve comparable circumstances,
it is to be expected that algorithms based on low-level features of this kind deliver
unsatisfying results.

Weak Statistical Correlations

Strong influences of the encoding robustness could still possibly become negligible
when a set of features is combined to a statistical model that correlates with a mean-
ingful feature of the music. We modified therefore a tool, which we previously created
to train artificial neural networks, to let us quickly annotate a collection of music
with “target” values, as, e.g., an estimation of a song’s mood or the dominance of
the singing voice (See Figure 6.7 for a screenshot). The same program also executes
all implemented feature-extractor algorithms and stores their results and the anno-
tated value in a file-format that the data mining and machine learning framework
“WEKA” [94] can read. Here, we tried to find correlations between the used feature
sets and the high-level annotations — with little success. Seemingly, the low-level
features we used (the same as above) are inapt as base for WEKA-classifiers like
“NaiveBayes” or “ZeroR” to make statements about the cheerfulness, affinity to the
genre “pop” and voice dominance (or at least to our estimations of these character-
istics) for the arbitrarily selected 53 songs.

Results by Pohle et al.

Pohle et al. presented in [66] a detailed evaluation of the suitability of various combi-
nations of feature extraction and machine learning algorithms for music estimations.
The three examined feature sets stem from publications which are often used as ref-
erences and cover up to 146 dimensions. The chosen machine learning algorithms,
including decision trees, regression tests, and support vector machines, cover the
standard algorithms used in MIR publications. These algorithms were trained with
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a database of 834 manually annotated songs to classify them into perceptual cate-
gories like “perceived tempo”, “mood” or “complexity” on the basis of the different
feature sets. Then, they compared the classification accuracy with the baseline,
which is the accuracy of an algorithm that simply chooses always the most frequent
class regardless of any features. The overall results showed that even the best tested
combination was barely able to beat the baseline. Pohle et al. found for some clas-
sifications “no indication [..] that the most commonly used audio features are useful

[..]”, and in most cases the overall classification accuracy was below the baseline.

It needs to be stressed that our informal, explorative investigations do not satisfy the
requirements of a rigorous study and the used statistical methods are disputable. We are
also not saying that it is impossible by principle to create algorithms which emulate human
appreciation of music — albeit Aucouturier and Pachet indeed suspect an upper bound of
the possibly achievable performance in [3]. However, these observations and the confir-
mation of our findings in [66] were discouraging enough to estimate that our approaches
would not be futile in the foreseeable future. Thus, we discontinued further efforts in
this field of research and included only the in the following discussed MIR-based algorithms.

One of the many dimensions in which pieces of music can be alike or differ is the
perceived strength of the main beat. As Tzanetakis showed in [88], most people understand
the feature “beat strength” roughly the same way and estimate it usually similar. To obtain
information about the main beat of a song, we implemented an algorithm based on the
“Beat Histogram”, a representation of a songs self-similarity, as introduced in [87]. To
compute this histogram, the algorithm conducts the following 6 steps:

1. Decode the input-song to PCM data and cut out a part of 15 seconds after one
third of the song’s duration. Only this part is used for further computations to
improve computation speed and ignore falsifying influences of intros, which often
differ significantly from the rest of the song.

2. Compute the “Short Time Fourier Transformation” (short: STFT) of the data. This
transformation converts subsequent and overlapping “windows” of the wave-data from
the time- into the frequency-domain. For a detailed introduction to the STFT and
a detailed explanation of the computation process, see our previous work [75].

3. Combine the coefficients into three bands to separate rhythmic features in bass-,
middle- and high-frequencies.

4. Subtract the average of a band from all values (“mean removal”) to enhance the signal
for the autocorrelation.

5. Compute the autocorrelation of each band separately. This is done by the following
function:

Autocorrelation y for periodicity k:

where x[n] is the nth value in a band, and N a band’s cardinality.

The computation is thereby limited to the beats-per-minutes (short: bpm) found in
non-exotic western music (40 to 130).
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(a) Beat histogram of “Hung up” by Madonna (b) Beat histogram of “Kleine Schwester” by Eric
Fish

Figure 6.8: Two exemplary beat histograms.

6. Enhance the the autocorrelation by removing integer multiples. For this, a copy of
the result of the previous step is clipped to positive values, time-scaled by a factor
of 2 (i.e., the new series of values is two times as long as the original one), and
subtracted from the original series. Thus, the effect of integer multiples is reduced.
In this way, periodicities like 60 and 120 bpm should influence each other less.

The result of these steps is illustrated in Figure 6.8 on the basis of Madonna’s “Hung up”,
a danceable song with a driving beat, and an atmospheric ballad by Eric Fish, which is only
accompanied by an acoustic guitar. These histograms are now the basis for actual feature-
extraction algorithms. The first of these implemented in AudioPhield is the BeatStrength-
extractor, which finds the highest peak in the bass-band and compares it to the average
energy contained in the band. Also, a correction factor is applied to scale the resulting
values to the required [0; 1] interval. The second algorithm is called BassBeatDominance;
it is supposed to estimate if the perceived beat is dominated by the bass band. Therefore,
it adds the energy contained in the two highest peaks of the lowest band and divides it by
the accumulated energy of the two highest peaks in the combined higher bands. Again, a
scale-factor is multiplied to the result.

While these algorithms deliver understandable results in most cases, the extracted
values are still not precise and robust enough to be of great value. The similarity-estimation
process discussed below takes these features therefore only into minor account.

Folksonomy Data
As we discontinued our MIR approaches, a new source to obtain meaningful data about
pieces of music from needed to be found. Luckily, the already several times mentioned web-
service “last.fm” provides a simple API to access their database. This section will discuss
briefly what folksonomy>®*-data the service provides and how it is used in AudioPhield.
One of the functions, last.fm offers to its users is the possibility to annotate tracks,
albums and artists with arbitrary tags, i.e., with short snippets of text. This function is
quite popular and used for various purposes: There are personal tags like “seen live” (which
is even one of the most popular tags), “favorite” (in various different spellings) or “one-
mightbecomebarrenlisteningtothis” [@6|. However, there are also many tags that describe

34The term “folksonomy” is the fusion of “folk” and “taxonomy”. It is used as umbrella term for any
system, in which casual users collaboratively classify or rate pieces of data.

61



6.3 Selected Implementation Aspects 6 IMPLEMENTATION

the music in general. Among these are tags indicating the genre, mood, or instrumentation
of a song, album or artist. This is also the kind of data that is valuable for AudioPhield —
and, fortunately, it is accessible through “.getTags™calls to last.fm’s API3?.

The following is a cutout from a typical dataset obtained this way (here for “The wizard”
by Black Sabbath):

1 <?xml version="1.0" encoding="utf-8"7?>

2 <1fm status="ok">

3 <toptags artist="Black Sabbath" track="The Wizard">
4 <tag>

5 <name>heavy metal</name>

6 <count>98</count>

7 <url>www.last.fm/tag/heavy’20metal</url>
8 </tag>

9 <tag>

10 <name>metal</name>

11 <count>74</count>

12 <url>www.last.fm/tag/metal</url>

13 </tag>

14 <tag>

15 <name>classic rock</name>

16 <count>67</count>

17 <url>www.last.fm/tag/classic%20rock</url>
18 </tag>

19 <tag>

20 <name>hard rock</name>

21 <count>50</count>

22 <url>www.last.fm/tag/hard),20rock</url>
23 </tag>

29 <tag>

30 <name>70s</name>

31 <count>25</count>

32 <url>www.last.fm/tag/70s</url>

33 </tag>

79 <tag>

80 <name>guitar</name>

81 <count>15</count>

82 <url>www.last.fm/tag/guitar</url>

83 </tag>

This cutout only shows the first few lines of the data sent by last.fm. The original
xml-file goes on for 450 more lines with more tags associated with the song. Obviously,
this tag-data can be of great value for AudioPhield: Even if the users could not agree on
the question, to which genre a song belongs, to know which genres possibly fit is even more
meaningful than a clear classification into a single genre. Also, tags like “70s” or “guitar”
give insights about issues that even our most ambitious content-based approaches could
not target.

However, this information is still to be transformed into data usable in AudioPhield.
The fact that the tags can be attached arbitrarily without supervision, causes some prob-
lems. There are large amounts of tags that are just spelled differently (e.g., “hip-hop” and
“hiphop”), effectively used as synonyms (e.g., “hip-hop” and “rap”) or at least very close

35 A complete overview of this API can be found in [@8]. Tt contains at the moment no possibility to
obtain data that would be even more valuable for AudioPhield: The precise similarity data last.fm uses
internally.
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(e.g., “doom metal” and “death-doom metal”). On the other hand, there is also a lot of noise
in the form of outright wrong tags. Most of these wrong tags appear on the bottom of the
list and have a small “count”-value, and are thus easy to delete by just applying a threshold
— 4’ seemed to work well in our experience. Unfortunately, the tag-list for artists does
not contain a “count”™value of this kind. Furthermore, erroneous tags also appear closer to
the top of the lists occasionally. To cope with these difficulties, we developed a system of
extractors based on the list of the most popular tags. Every extractor represents thereby a
rather broad feature and examines the available tags, if indicators are present that suggest
a song’s belonging to their class. To do this, the extractors access a list of manually set
rules to recognize a tag’s meaning. The following cutout shows the xml-file that holds all
these rules (see Appendix A for the complete file):

127 <web_extractor significance="10">
128 <contains>

129 <any>electro</any>

130 <word>house</word>

131 <match>dance</match>
132 <word>eurodance</word>
133 <any>techno</any>

134 <word>rave</word>

135 <word>trance</word>
136 </contains>

137

138 <contras>

139 <match>rock</match>
140 <any>metal</any>

141 <match>hip hop</match>
142 <match>hip-hop</match>
143 </contras>

144 </web_extractor>

Fach such web_extractor entity defines one extractor. For each extractor a list of
search-terms is defined, which may either indicate that the song fits this extractor (inside
the contains-environment) or not (inside the contras-environment). These search-terms
must be applied with different rigor: A match-term has to equal the tag exactly; if a term
is marked as word, it must be separated by other words in the same tag by spaces; the
any-rule is the softest as here the term just needs to appear anywhere in the tag, even
somewhere inside a word.

So, an extractor knows now for the presence of which tags to look and how to do it.
Therefore, it is time to compute a single estimation value and an accompanying accu-
racy value out of these indicators, as required by the similarity computation. We devel-
oped therefore an algorithm, which first counts all appearances of indicators and contra-
indicators in the tags assigned to the song and in the tags assigned to the artist and the
album. Then, the program essentially applies the decision tree depicted in Figure 6.9. So,
for some default cases, no actual computation is executed. The accuracy value for cases
where only indicators for albums or artists could be found, is lower than when tags describe
the track itself, because a song may well not be typical for an album or an artist. Also,
bands tend to change their style over time. Thus, only track-tags can cause an accuracy of
1. The computation formula the figure refers to in the lower right is quite simple. It com-
putes the estimation-value r and the accuracy-value a based on the amount of indicators
ip and contra-indicators i.:

0.5 * |ic|

r=lip| — (0.5 % ig]), a=1-— -
’Zp|
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Figure 6.9: Decision tree of tag extractors.

The results are afterwards, if necessary, clipped to [0;1]. The 0.5 factors strengthen the
influence of pro-indicators against their counterparts to avoid situations where tags would
cancel each other out: When about equal amounts of indicators and counter-indicators
are found, then perhaps both are true. Consider for example a duet. This song may have
“male voice’-tags and “female voice”™tags, which normally contradict each other. Without
the factor, both extractors would return zero as accuracy and thus not be implied in
similarity computations, although they could contribute valuable information.

The approach to use information from tags derived from a folksonomy has some clear
advantages: The resulting values correlate to very high-level features of the music in terms
which are natural to users. Furthermore, some tags, as, e.g., “guitar”, are usually only
attached to a song, when the guitar is unusual dominant or otherwise peculiar in the song.
So, these tags contain also an estimation of how important a feature is for the considered
piece of music. On the other hand, however, satisfying results are limited to the genres and
artists, a sufficient part of the community is interested in. Otherwise, there are usually just
to few tags to deduce a detailed estimation. So, because the users of last.fm at large seem
uninterested in reggae, even prominent artists as Bob Marley are only sparsely tagged —
and classical music is practically not tagged. But even if an overwhelming amount of tags
is available, the deducted information stays essentially binary: Either a tag is present or
not. So, the extractors can only decide if a song is considered, e.g., melancholic — but not
how melancholic on an absolute scale or compared to other songs. Because of this, the
profile, which all tag-based extractors combined can create, remains rather imprecise. A
more in-depth discussion of data deduction from folksonomies can be found in [41].

6.3.2 The SOM

Chapter 2.1 already introduced self-organizing maps as means to locate data entities after
their similarity. Then, in section 5.1.3 we further discussed its usage in AudioPhield.
Now, this chapter shall demonstrate how the SOM in AudioPhield works and what its
peculiarities are.

As stated before, Kohonen maps, as SOMs are also called, belong to class of unsuper-
vised learning neural networks. This means that there are no correct results, which the
net is supposed to learn and use for classifications. Instead, the network is just provided
with input-data and adepts itself by using the following technique:

The SOM is built up as a rectangular grid of “neuron” called nodes. Each of these

64



6 IMPLEMENTATION 6.3 Selected Implementation Aspects

neurons represents a — initially random — point in the high-dimensional space of the input
data. The training algorithm now seeks for any item in the input set the neuron whose
point in this space is closer to the point specified by the input object than those of all other
neurons. Then, this neuron, as well as some nodes in its proximity, are adjusted according
to the values of the item. In other words, the nodes in the SOM move towards the point in
the feature-space. Because the influence of new items decreases over time, at some point
a static status is reached. Figure 6.10 demonstrates the principle with a fictive Kohonen
map trained to classify colors.

The SOM in AudioPhield follows this scheme largely. It is also a regular grid of nodes
that covers the whole surface, albeit with 80 nodes per axis finer than usual implementa-
tions (see, e.g., [39]). This number of nodes was chosen because it is high enough to enable
fine nuances in close proximities, and low enough to make searches and modifications com-
putable in reasonable time3®. The input data for this SOM consists of the feature vectors
attached to individual songs. Since there are 45 different extractors, these feature vectors
are 45-dimensional. So, each neuron in the SOM also holds a vector of this dimensionality.

Like many other SOM implementations, the KKohonen map in our system uses “online”
training instead of “batch” training, i.e., each neuron is adjusted as soon as it was deter-
mined to match an input vector best. In “batch” training, the algorithm first finds the
closest neuron to each input item and then updates the neurons collectively. Also, the
training process in AudioPhield is limited to a single epoch. That means that every input
object is only applied once to the SOM and then immediately placed close to the best
matching neuron — but not exactly on it to avoid that the icons are placed on top of each
other. In this way, we get immediate results, and the SOM needs not to be recomputed
completely when songs are added or removed from the input set. As a downside, the risk
arises that the formerly closest neuron “moves away” from an already placed song-icon
when later added items alter the same area. Due to the pre-imprinting (see below) this
happens rarely in our experience.

For the usually slowly diminishing adjustment-strength and -reach, we use a very simple
alternative: In AudioPhield both values stay always the same. The reason for this is the
pre-imprinting as described below. The high influence of items added to the SOM early
in many implementations shall ensure that the SOM is partitioned into few major clusters
instead of many, very similar, small clusters. This risk is non-existent in our approach
because the pre-imprinting circumvents it effectively. Which neurons are affected by an
adjustment, and to what extent, is determined by computing a certain reach factor divided
by the squared Euclidean distance.

To compute the distance between points in the feature space, it is important to con-
sider that this space is by no means Euclidean, and its “dimensions” are hardly linearly
independent; after all, they encode to what extent music listeners deem a fuzzy defined
term appropriate to a song. Therefore, the common Euclidean distance (see footnote on
page 6 for the formula) is not the best possibility to compute distances in the feature space,
as it regards all dimensions as equally important. Also, it can not take inaccuracies into
account. Therefore, based on the Manhattan distance d,, in the n-dimensional feature
space

n
d (Z,7) = _ |; — i, with &, € F"
=1

36 According to Morchen’s taxonomy in [58], AudioPhield’s SOM is thus technically an “Emergent SOM?,
or ESOM.
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Figure 6.10: Illustration of the learning process of a 8x8 SOM.

Each square represents one node of the SOM. The data space has three dimensions, which are
depicted here as the color channels red, green and blue.

(a) shows the SOM before the learning process started. The nodes hold random weight vectors
close to the neutral gray to enhance the visibility of the learning process.

(b) and (c) show the result after the SOM was fed one and 20 random colors similar (but not
necessarily identical) to the ones depicted in (e).

(d) shows the final state after many iterations. Note the clear separation between the colors.
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we devised the “double-weighted Manhattan distance” dywm:

n

Qwwm (£,5) =Y (wq, wa, |w; — yi]) , with £,5 € F" .
=1

We chose a modified version of the Manhattan distance because it makes no assumptions
about connections between the different dimensions. The first applied weight factor wy is
a n-dimensional vector that describes the relative importance of a dimension, and thus, a
feature. In this way, we can control the influence a feature has on the overall placement
process. E.g., if two songs have the same “cheerfulness’-value but diametrically opposed
“industrial”-values, then the latter should be of more importance than the former — because,
even if both songs are cheerful, they wll most likely still sound very different. While the
first weight wy is defined globally for all input items, the second weight w,, which is also a
n-dimensional vector, is defined for each item individually: w, contains the accuracy value
that each extractor computed besides the actual value. With this modification factor, the
influence of potentially erroneous results can be weakened. If, e.g., there were no tags
found, which could indicate if a song features a female singer or not, the corresponding
extractor returned an accuracy of zero. So, this dimension is utterly ignored for the
distance computation process, and the placement relies solely on other features with higher
accuracies. Note that this distance metric makes it impossible to compare distances of
different song icons from a certain neuron: If for one song were significantly more tags
found, then its distance will generally be greater because less dimensions are ignored by
the computation. However, since we only need to compare the differences between nodes
and song icons, this peculiarity is irrelevant here. The accuracy values serve also a second
purpose: When neurons are adjusted according the features of a song, the strength of the
adjustment depends on this also on this accuracy. This way, the influence of erroneous
features is further weakened.

As introduced in 5.1.3, the SOM in Audiohield needs to be pre-imprintedf for various
reasons. So, while the vectors held by the neurons are still initialized randomly, a fixed
set of feature-vectors is applied to the Kohonen map at defined positions. To ensure that
the SOM is well partitioned, this preliminary training step is executed with significantly
stronger impact and reach than the later, normal training. Since this imprinting is supposed
to only define the SOM’s layout at large and not in any detail, the used feature-sets are
only defined in the most influential dimensions, like, e.g., some of the genre features. Thus,
while it is ensured that music belonging to the same major class of music, there still can
emerge local clusters according features with less impact, as instrumentation or decade of
publication. The necessary feature-sets are manually refined vectors from automatically
classified songs. A special tool called “SOMpregnator” was integrated into the DataHandler
to allow the arbitrary placement of these vectors, and thus, the creation of a pre-imprint-
map. Figure 6.11 shows a screenshot of this tool. The displayed layout was also used for
the user study in the next chapter. It is, however, created absolutely arbitrary and the only
justification of this layout is that it seemed sensible to us. Further studies are necessary to
find a more universally valid layout. See Figure 6.13(a) for a screenshot of automatically
placed songs.

6.3.3 Spring-algorithm

The above mentioned method during the item placement to avoid song icons being located
on top of each other is functional but seems insufficient in some cases. Therefore, we
included a force-directed algorithm that refines the layout to reduce overlaps. The principle
of this algorithm mimics easy physics: Song-icons are considered as carrying equal electric
charges, and thus exerting repulsive forces on each other. At the same time, they are
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Figure 6.11: Screenshot of the SOMpregantor.
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Figure 6.12: Illustration of the forces exerted on two items. F5 names the force by the
spring pulling to the original location. Fr names the repulsing force between icons.

connected to their original position by a spring. As soon as the icons are then released,
they interfere with each other and seek positions where all forces applied to them equal
each other out. Figure 6.12 demonstrates the principle for two items.

The algorithm retraces this procedure in discrete time-steps. So, the system is not
actively looking for the best possible layout but just computes simple parallelograms of
forces. The following pseudo-code illustrates the procedure translated into software:

while(notAborted)
distanceMatrix = computeDistanceMatrix(allIcons)
foreach icon in alllcons
forceVector = SPRING_STRENGTH * icon->vectorToOrigin()
foreach otherIcon in alllcons
repelAmount = REPULSION_STRENGTH /
distanceMatrix->distanceBetween(icon, otherIcon)
repelDirection = otherIcon->position - icon->position
forceVector += repelAmount * repelDirection
newPosition = icon->currentPosition + ACTIVITY * forceVector
icon->setPosition(newPosition)

© 00N U WN +~-

=
= O

The effect of this non-terminating algorithm depends obviously on the three factors
SPRING_STRENGTH, REPULSION_STRENGTH and ACTIVITY. The first two essentially specify
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Figure 6.13: Comparison of the placement before and after the spring-algorithmn is applied.

the ratio between the force exerted by the spring and the repulsion force. So, a higher
SPRING_STRENGTH-value causes the icons to stay closer to their original position. The
ACTIVITY-value effectively regulates the speed of the algorithm: High values (close to 1)
cause rapid adjustment but also cause the icons to “flicker”. Low values, on the other hand,
enable the forces to come closer to the desired equilibrium — but quite some time may pass
until results are visible. To combine the advantages of both alternatives, the algorithm
starts with a high ACTIVITY and decreases the value once after every pass of the main-loop
by a certain percentage. See Figure 6.13 for a demonstration of the algorithm’s effect. It
should be clearly visible that the icons in the second picture (b) are significantly further
separated from each other. The figure shows also one downside of the spring-algorithm:
The very dense cluster on the right in panel (a) has essentially vanished in panel (b).
Thus, information was lost. However, even if this problem might not be avoidable at all,
we believe that it could be at least reducible after further development — e.g., by including
similarity matrices in the calculations as Hlavac demonstrated in [39].

6.3.4 Free-form Fisheyes

As chapter 5.2.1 on page 28 discussed, AudioPhield shall offer fisheye views to magnify areas
of the field. Therefore, we initially implemented the generic fisheye-function as introduced
by Sarkar and Brown in [73]. We could thereby not simply apply the fisheye lens on the
visualization as a whole as if it was simply an image: After all, the icons are not static but
rotate about their center, and the fisheye is supposed to trigger the display of additional
information in the radial texts. These effects would be impossible to achieve if the fisheye
was just moving pixels. So, the system calculates the distortion and magnification for each
icon separately.

Therefore, it computes a distortion factor f and a magnification factor m in dependence
of the distance z from the center of a fisheye lens for every icon, whose distance from this
center is smaller than the maximum range x4, of the lens, according to these formulas:

d+1) = d+1
flz) = 7( | ) e ,and m(z) = —(‘ |+ )
(d xr‘faz + 1) (d x'nfaz + 1)2

Here, d is the distortion factor, which determines the steepness of the distortion curve and
the maximum magnification®”. Figure 6.14 shows the plots of both functions for d = 3 and

3TBoth statements are actually equivalent, as the magnification function is the first derivative of the
transformation function.
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(a) transformation function (b) magnification function

Figure 6.14: Plot of the graphs of the transformation function and magnification function
of the default fisheye view for d = 3 and x4, = 1.

Tmazr = 1. The so generated value f is then simply multiplied on the delta-vector between
the center of the fisheye lens and the icon to obtain the transformed position of the latter.
Accordingly, the magnification factor m is multiplied with the basic size of the icon to get
the new, magnified size.

Figure 6.14(b) reveals a problem of these functions: The magnification reaches very
high values in the center before it decreases rapidly. Also, the distortion in the middle of
the fisheye is very strong for a small area. As a consequence, icons need to be very close
to the center to achieve the necessary magnification to display both radial texts (compare
section 5.2.2; page 32). Worse, tiny movements of the fisheye lens are enough to cause
icons in the middle of a focus area to move big distances. So, it is virtually impossible
to get song icons to the very center of a lens and examine them soundly, and the whole
interface seems rather nervous.

Our approach to solve this problem was to introduce a “plateau”. This is an area in the
center of the fisheye distortion with a constant magnification and linear distortion. Here
are the formulae of the in this way modified functions f(z) and m(x):

d+1
dpyxx : xz<uw 7(%) 3 T < T
P p (d Tmax +1)
f(x) = (d+1) —= ,and m(z) = 7
(@ Gz 1) B (d 2241y =

Imazx

where x), is the range of the plateau, and d,, is the constant translation-factor for the linear
distortion in the plateau. Figure 6.15 shows the corresponding graphs. The magnification
in the plateau is constant and continues the function beyond z, to avoid magnification
jumps. However, since the transformation function is not continuous, here jumps exist.
These occur when the fisheye lens is moved in such a way that an icon, which was previously
further than z, from the lens’ center, is now closer than x, — i.e., when a song icon enters
the plateau. Then, the icon “snaps” upon the plateau. In this instant, it does not move
smoothly like before but jumps from one location to the other. While this may sound
like undesired behavior, this approach is clearly superior to the default fisheye view when
adequate values for x;,, and d, are chosen. Now, the user can deliberately use the plateau
to “catch” song icons. In contrast to before, they do not get more uncontrollable the
closer they get to the fisheye’s center but move slower and are thus easier to examine and
play. Also, the jump discontinuity in the transformation function causes a ring around the
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Figure 6.15: Plot of the graphs of the transformation function and magnification function
of the fisheye view with plateau for d = 3, e = 1, , = 0.2 and d, = 1.5.

plateau, where no icons appear. This ring is useful as it clears space for the additional
space requirements of the radial texts.

However, this approach of directly applying fisheye distortions and magnifications to
icons does not meet all of our requirements. For once, it does not scale well with the number
of icons in the visualization beacuse the (rather costly) transformation and magnification
functions are to be recalculated for each icon and each frame. This problem multiplies
with the number of fisheyes used simultaneously — so, it scales even worse with the number
of users. In the case of multiple fisheyes the computations when these overlap would be a
challenge, too. Furthermore, the principle is rather limiting: There is no way to create focus
areas that are not perfectly circular. Concepts like the original SoapSpots or CookieDough
(see chapter 5.3.1) are thus not possible.

Consequently, we developed a new approach based on a separate distortion layer:
Therefore, a finely woven, rectangular grid of nodes covers the whole interface. These
nodes are so-called “distortion nodes”. Each of them stores a two-dimensional translation
vector and a magnification value. Now, the functions that are to create areas of focus
do not influence the depiction of the song icons themselves but only the values stored in
the distortion grid. In this way, there is a clear upper bound of the calculations neces-
sary in one frame because the number of distortion nodes stays constant regardless of the
amount of song icons or fisheye lenses in the visualization. The position and zoom of an
icon is computed by simply combining the values of the nearest distortion nodes linearly
and applying the result of this operation to the icon’s size and position. This operation
is significantly less expensive than the computation of the fisheye functions — and may
furthermore be executed hardware-accelerated by the dedicated graphic processor. Thus,
this approach scales better with the number of icons. See Figure 6.16 for an illustration.

Also, the distortion and magnification stored in each node may be freely and separately
set. This feature enables the implementation of arbitrary methods to create focus areas, as,
e.g., the CookieDough interface, as described on page 42, where icons may just be moved
without changing their magnification. Also, there is no need anymore for strictly circular
focus areas — thus free-form fisheyes are possible.

The distortion grid has another peculiarity: The program parts, which create and
maintain focus areas, are just allowed to set target-values for the distortion vector and
magnification — not the current values. Another class, the already mentioned Attenuator,
has the purpose to adjust the current values towards the set targets. This happens
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Figure 6.16: Illustration of a low-resolution distortion grid. The lines are supposed to
visualize the distortion vector of a grid-node. Its magnification value is indicated by the
color-coding of the small disks: the higher the red-value, the higher the stored magnifica-
tion.

asymimetrical depending on the change direction: If the magnification and distortion
is to be increased, the adaption occurs usually significantly more quickly than in the
other direction. The exact speeds are determined by the active class to handle focus
areas. Thus, concepts like the original SoapSpots, where areas of focus slowly return
to their undistorted state, are possible. Furthermore, the whole interface seems to react
smoother because all position and magnification changes occur gracefully animated. This
is especially notable and valuable when song icons snap into a fisheye lens’ plateau or out
of it because the abrupt jump from the original concept is now a swift movement to the
new location. Thus, the effect of the lens is better comprehensible. Figure 6.17 illustrates
the distortion grid in combination with a very low set decrease-attenuation.

Now, we are confident that the most interesting features and solutions implemented

in AudioPhield were made clear. The next chapter has to show if this implementation
matches the design of the previous chapter sufficiently.
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Figure 6.17: Nllustration of a distortion grid with low attenuation.
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7 Evaluation

The previous chapters introduced and motivated AudioPhield and discussed its design and
implementation. In these chapters, most of the decisions made during the development
of the system were well grounded on knowledge from various branches of research. This
chapter will show if this knowledge was applied correctly — and thus, if the decisions were
sound — by describing and analyzing a user study we conducted. It will also verify if we
achieved the goals defined in chapter 4.

The chapter is thereby organized in the following way: First, we will explain which
questions this user study is supposed to answer, and which answers we expect. Then we
will describe the general setup and conduction of the user study. Information about the
participants is herein included. The section afterwards covers the tasks, the users are asked
to carry out. Then, we will present and discuss the results in the sections “Early findings”,
“Task completion” and “Observations”. Finally, it will be discussed if, and how, the study
answered the questions we asked in the beginning.

7.1 Aim and Expectations

AudioPhield was developed with a clear goal: A computer system was to be developed,
which supports casual, explorative, and collaborative browsing of private music collections
on a multi-touch tabletop display.

With the knowledge about (social) music consumption in chapter 3, we can refine and
operationalize the task of casual and collaborative browsing: The system is supposed to
support music talk as introduced in section 3.2.3. So, the first question the user study
should answer is:

e Does AudioPhield support music talk?

Although this question is quite central, it might be hard to answer because the occurrence
of music talk also depends heavily on outside factors like the relationships inside the user
group (compare section 3.2). However, due to the fact that users are standing around a
table that is dedicated solely to music playback at this time and due to probable rediscov-
eries of almost forgotten songs, which are bound to provoke music talk by conjuring up
memories, we expect that AudioPhield will at least not hinder music talk.

Section 4 also revealed the core issues in the development. Whether these issues were
addressed properly and solved by AudioPhield’s design, are further questions, which the
user study shall answer. These are in detail:

Issue “Relate Pieces of Music’:

e Does the chosen visualization of perceived song similarity as spatial prorimity support
casual browsing?

Issue “Visualize Music Libraries™:
e Does the depiction of a whole music library at once provide reasonable overview?

e Do focus areas in the form of fisheye lenses enable accessing details while preserving
context?

e Is the information depiction reasonable, i.e., is the most relevant information for
browsing present and readable?
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Issue “Enable Simultaneous, Collaborative Interaction on a Tabletop Display”:
o Are users able to understand and use the integrated interaction possibilities?
e Can users interact simultaneously? Do they interfere with each other?

o Are the interaction techniques suitable for a tabletop display? Does the system exploit
the table’s multi-touch capabilities?

Since the design was essentially created to meet the requirements implicated in these
questions, we expect positive answers to all of them.

While the previous questions were only concerned with the design of AudioPhield, i.e.
with the system’s features as they should be, the user study is also supposed to verify if
the implementation realizes this design sufficiently. So, a further open question is:

o Is the software a sufficient realization of the developed design?

For the most part, we think that the implementation will measure up to the design in
the user study. One reason for that is, of course, that the design phase and implementation
phase were not really isolated but interwoven enough to influence each other — even the
evaluation phase caused minor adaptations (see below). The only major aspect where we
believe that the software will fall short of the design, is the similarity computation because
the data delivered by the extractors seems not detailed enough.

Due to the fact that the user study is performed using the implemented system as
presented in 6, this question is not isolated from the questions above regarding the design.
So, wherever AudioPhield fails to meet our expectations, we need to ask: Is it a flaw in
the design or in the implementation?

7.2 General Study Design

We decided to conduct a rather informal, explorative study to answer the question catalog
above. This form of study was chosen because of two reasons: Firstly, AudioPhield’s aim
is to support casual activities instead of tasks with clear outcome like database queries;
therefore, it is hard to operationalize to what degree the system is effective. Secondly,
formal studies tend to force probands into specific behavior. We, on the other hand, were
more interested in how users would interact with the system and with each other on their
own. The concept of music talk, one of the key-behaviors to support, in itself requires that
there is no special task to perform.

The general setup for the study was as follows: Probands were to interact with the
tabletop display depicted in 6.1 on page 49. The device was therefore erected in a quiet
room against a wall so that it is easily accessible from three sides. Albeit these surroundings
can not be regarded “private” as postulated in the target “Usage Scenario” on page 19, they
were at least convenient; also, the fact that the evaluation took place in the evening hours
provided for a feeling of leisure time. Two speakers were set on top of the table and
connected to the computer running AudioPhield. A camera was installed next to the table
in such a way that it could oversee the movements of the users and the displayed contents at
the same time. The camera surveillance seemed advised to allow us afterwards to review the
activities of the probands with respect to selected aspects. Furthermore, the camera freed
us from the necessity to watch over the probands’ shoulder all the time, and should have
provided them with a stronger sense of privacy. Nevertheless, an evaluator was during the
whole study in the same room to give instructions and make further observations. Figure
7.1 illustrates the experimental setup.

Six participants, five male one female, of various occupations were recruited from our
circle of acquaintances. They are between 21 and 31 years of age. While their technical
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Figure 7.1: Photo of the experimental setup.

experience reaches from rather low to very high, they estimated their experience with
tabletop interfaces not beyond average. All of the probands have private libraries of digital
music with sizes from 1500 to 10,000 songs. They access their collections frequently and
play on average between 40 and 300 songs per week. Thus, the participants can all be
considered to meet the requirement of being interested in music (see section 4.1). All but
one of them were familiar with automated music recommendation- and selection-systems
like “pandora”([@17]) or “musicIP”([@18]); three probands used them frequently, and one
even delegated the task of music selection mainly to such automated systems.

To enable collaborative and social observations, they were divided into three pairs. In
the following, we will consistently refer to these teams as A, B and C, and to their members
as Al, A2, B1, and so on. All probands knew their team partner before the user study,
but to varying degrees: Only the members of team C are close friends, the relations in the
other pairs were effectively limited to encounters at various festivities. If this affiliation is
close enough that the probands feel comfortable to present their private music library to
each other — as the target usage scenario in section 4.1 assumes — will be one of the study’s
results. Table 7.1 presents the participants in more detail.

Obviously, some parts of the evaluation can only be conducted with pairs of users.
Other questions, however, can only be answered when one user interacts with the system
alone. Still other questions might not be answered by the footage of the study at all.
Therefore, we split the user study into three parts: First, a single-user episode shall give
information about how usable the system is, and how sensible the depiction and placement
of the icons are. Then in the second part, both team-members operate AudioPhield to-
gether; here, the evaluation is concerned with evolving social protocols, interferences and
general communication. To ensure that both are already familiar with the interface at
the beginning of this collaborative phase, both single-evaluations are executed before. The
first user was therefore asked to wait outside during the second participant’s solitary test.
Finally, the probands have to fill in a short questionnaire about their experiences.

The usage scenario, for which AudioPhield was developed, expects that users are,
at least in part, familiar with the depicted music library. Therefore, all probands were
asked to select 100-120 songs from their collection and hand them over to us a day before
the study. They were supposed to follow the following criteria for this selection: The
selection should preferably represent the proband’s taste in music; they were allowed to
choose randomly as long as they are able to identify at least most songs by their artist
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Al A2 B1 B2 C1 C2

Age || 28 | 30 | 21 | 31 | 27 | 26

Gender d d Q Jd d d

Technical Experience || ++ | ++ - s + ++

Experience with tabletop
interfaces

Size of private collection || 7200 | 3000 | 1500 | 10000 | 7500 | 4000

Average songs played per week || 300 | 100 80 40 60 100

Auto-selected songs (%) 0 10 0 60 0 30

Relation loose loose close

Table 7.1: Characteristics of the probands. Experiences are depicted on a scale with 5 steps
from “no experience” (— —) to “somewhat experienced” (o) to “very experienced” (4+).

and title. The selection may, but is not required to include favorite songs. The demand
that the participants deliver their selection at least one day before the evaluation has two
reasons. First of all, the automatic extraction of features takes up to ten seconds per song.
While these 20 minutes could be annoying for the proband to wait before the study would
start, the real time need arises with second reason: Since we were not convinced that the
automatically extracted data would suffice for a good similarity-based layout, we refined
the layout manually by moving the already placed songs (via a special interface, which was
extra integrated for this purpose). If this measure was really necessary — and if the manual
data was really better than the automatic — is also part of the study.

Unfortunately, the preselected music from the participants did not include all the in-
formation that AudioPhield was developed to display. Especially, it did not contain any
data of how recently a song was played, how often it was played at all, and how it was
rated®®. This means that two of the visualizations we had devised in the design phase were
now obsolete, and, thus, their relevance and intelligibility had to remain unverified by this
study.

Before the user study was conducted with the participants introduces above, we ex-
ecuted a sanity check with two associates from our university. As a result, minor bugs
in the implementation could be found and fixed. Furthermore, obviously missing features
were found and integrated; the grid in the background to visualize the fisheye’s effect, the
possibility to jump inside a playing song and the coupling between the size of a focus area
and its zoom strength are the most important of these. Of course, also the user study itself
was revised to the final form presented in the next section.

7.3 Tasks

This section will discuss in detail which tasks the participants were asked to fulfill, and
what answers were expected to be revealed by them.

38 Actually, some songs did contain rating data. However, mostly only few songs were tagged this way
and — because the ratings were created by different programs — their encoding was not consistent.
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7.3.1 Single User Tasks

The single user evaluation consists of six separate steps. Four of these steps are concerned
with the two available interaction techniques ZoomFrames and SoapSpots. To minimize
learn-effects, the succession of these tests alternates. So, three of the six participants
evaluate the ZoomFrames first and then the SoapSpots, while for the other three the order
is reversed.

In the first part of the solitary evaluation, we want to find out how “intuitive” the design
is. This includes the question, to what extent AudioPhield reacts according to the user’s
expectations, and which features and functions the proband is able to find on her own, i.e.,
the “discoverability” of the interface. Therefore, we start with a so called “zero-instruction-
run”: When the subject enters the room, AudioPhield is already running and depicts her
music collection with the manually enhanced layout. She is given no instructions but
“please interact with the application and think aloud”; also, the evaluator is not allowed
to provide her with any support. While the proband is interacting with AudioPhield, the
evaluator takes notes, which features of AudioPhield were understood and which functions
were found. He was provided for this task with a detailed task schedule, which also enlisted
all discoverable items. This schedule is also included in this thesis as Appendix B. Since
this is the proband’s first contact with the application, there are possible findings in three
categories:

1. The starfield-like view (e.g., icons represent pieces of music)
2. Playback-interaction (e.g., tapping to start and stop the playback)

3. ZoomFrame- / SoapSpot-interaction (e.g., creation or movement of focus areas)

This phase continues until the subject is convinced that she has discovered all functions
she is able to find. It may be aborted by the evaluator, too, when there is nothing left to
discover or when the maximal time of ten minutes is reached.

In the next step, the researcher explains and demonstrates all functions of AudioPhield
to the proband and verifies that the discovered items were really understood. All features
not discovered or understood before are now tested for their learnability. Therefore, the
evaluator sets the subject tasks which are only accomplishable when the latter uses the
features to test; e.g., when the proband did not discover the playback via double-tap, she
is assigned the task “please play at least five random songs”. The concrete list of tasks was
previously defined in the task schedule (see Appendix B).

The following two steps essentially repeat the two stages delineated above with the
not yet presented interaction technique to handle focus areas. So, subjects who interacted
previously with the ZoomFrame view are now presented the SoapSpots, and vice versa.
Also the task principle stays the same: A zero-instruction-run to assess the technique’s
discoverability is followed by a series of concrete tasks to estimate its learnability.

The following test is a preference test: The subjects are given the possibility to adjust
various aspects of the interface to their liking. Therefore, a wireless keyboard is brought to
the table. By pressing different function keys, various variables are modified. The evaluator
explains and demonstrates the effect of these variables; the system shows additionally a
help-list of the functions assigned to the buttons. There are four ways to modify the
interface:

1. Switch between ZoomFrame- and SoapSpots-interaction
2. Modify the plateau-size in three steps: No plateau, normal size, triple size.

3. Modify the distortion strength in three steps from weak to strong.
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4. Turn the display of the origin-lines (the lines connecting icons in distortion areas to
their original position) on or off.

The first option is just supposed to reveal which kind of interaction the probands
enjoyed more. The second option shall uncover if our assumptions about the modified
fisheye-functions (see section 6.3.4) are accurate. If not, the subject is expected to turn
the plateau off. Is the third possible value chosen, then the user effectively was not content
with the fisheye distortion since this setting modifies the focus areas to use primarily
linear distortion. The modifications in the third variable are supposed to tell us if the
user wishes to have more detail information (large distortion value) or rather more context
information (small value). The last option will show if the users value the origin-lines as
aids for understanding and interacting with the focus areas, or perceive them rather as
clutter with limited use.

The last stage in the single-user phase is a data-influence-test. With this, we want to
verify that our assumptions about the quality of the automated feature extraction were
right, and thus the manual refinement necessary. Therefore, the participants are asked to
examine the current (revised) layout again for a short time. Then, the layout is switched
to the original, unmodified version. Now, without commenting on what was changed and
how the different layouts were created, the researcher requests the subjects to examine
the system again and tell their impressions. The test ends, when they have decided which
layout they favor and why.

7.3.2 Pair Tasks

This part of the evaluation is concerned with collaborative and social aspects of the inter-
action with AudioPhield. The setup is similar to before with the difference that now the
music selection of both team members is depicted on the interface. During this whole stage,
the participants are allowed to modify the interface to their liking by the means presented
in the preference test above. The stage is split roughly into two separate sections.

In the first half, we are interested in how the teams behave on their own. Therefore,
the pair study starts with another zero-instruction-run. During this phase, we hope to
gain insights about collaborative questions like “is the communication between the team
members symmetrical or are there asymmetrical roles?” or especially “is there music talk?”.
Also, we want to observe if social protocols evolve, and what conflicts they rule and how.
After this instruction-less stage, the evaluator assigns special tasks to the team, which are
supposed to induce certain behavior. So, the first task is “please introduce your music
collection to your partner”. This task should clearly foster asymmetrical conversation
because it implies that one proband adopts the active role of the presenter while the other
is forced to act as audience. Another task shall force the participants to compare their
musical taste and might therefore induce “music talk™like communication. The instruction
is “play songs to your partner which are good for dancing/relaxing/driving/working out”;
the exact purpose the songs should have is decided ad hoc by the researcher to match the
interests of the participants. The next task has a similar aim but should require more
communication: Fach team member is asked to close gaps in the musical education of
their partner by playing songs to them which they do not know but should — for whatever
reason. The next assignment shall coerce the participants into focussing their interactions
on the music selection of their partners. Therefore, they are asked to choose three songs
they would also like to have in their library.

The second part shall reveal to what extent it is possible to interact simultaneously
with AudioPhield. Therefore, both subjects are explicitly asked to perform the following
tasks at the same time. The first task is the one with arguably the lowest conflict potential:
The evaluator requires the participants to select and play five songs they would include in
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a playlist for commuting or driving. If the musical taste of the probands is not very similar,
they can concentrate for this task on different parts of the surface. This is also possible in
the next assignment, albeit under more stressful conditions: “This is a race. To win, you
need to be the first to play five songs whose title begins with a ’S’.” Here, we expect more
interferences than in the first case. The final task is designed to cause as much conflict
as possible. It is again a race but this time the participants are required to play songs of

artists that need to be contained in both selections®’.

7.3.3 Questionnaire

After the team tasks the participants are asked to fill in a short questionnaire. Apart from
general questions about their technical experience, music collection and music listening
habits, this questionnaire contains a part with seven statements, to which the subjects
could specify their agreement by a Likert scale with five levels ranging from “strongly
disagree” to “strongly agree”. The sentences to rate are concerned with general impressions
gathered during the interaction (e.g., “I generally enjoyed interacting with AudioPhield”)
but also include rather special topics (e.g., “I had problems to read the radial texts”).
Also, the questionnaire offered one page with three general, open ended questions for the
participant’s favorite features of AudioPhield, its biggest flaws and general improvement
ideas. See Appendix C for the complete questionnaire.

7.4 Results

The following section presents the most interesting results of the user study. First, we
will examine how the participants were able to complete the tasks and what conclusions
we derive from this. Then, a section follows about interesting general observations, which
were not explicitly in the scope of any task. The findings here build also the basis for the
final section “discussion”, which attempts to answer the question list in paragraph 7.1.

Note for the cites of participants used in this chapter: The probands spoke German
during the study; for the sake of readability, however, their remarks will be translated into
English in the following without explicit marks.

7.4.1 Task Completion

This section will reproduce how well the subjects were able to fulfill the tasks above. Also,
their trials and expectations are documented here.

Single-User Tasks

All subjects understood the connection between pieces of music and icons almost immedi-
ately. They also interpreted the presented layout as meaningful, and expected icons close to
each other to have something in common, albeit the interest and the interpretation varied:
For example, subject B2 suggested that clusters of icons might be “topical linked” but did
not investigate further. His team-partner, B1, suspected an ordering based on publication
year and language and attested the ordering to be “not that logical”. Another user (Al)
expected intuitively that proximity expresses general similarity and was so consumed by
exploring the results (“ahh, here is the electro corner!”) that he nearly forgot to look for
other functionalities of the system. Subject C1 also expected close songs to be similar and
understood the ordering as based on genre and rhythm but was surprised to find two songs

39To ensure that there are indeed songs of this kind present, the researcher had — if necessary — previously
added songs from one collection to the other with respect the particular subject’s taste.
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Figure 7.2: A proband tries stacking ZoomFrames to achieve music playback.

from the same artist, which actually sound rather unalike to us, quite apart from each
other.

The attempts to play back a song varied greatly and showed a lot of imagination — one
proband, for example, hoped that stacking four ZoomFrames on top of each other could
work (see Figure 7.2). All test persons, however, first tried to activate playback by a single
tap and were rather surprised to not achieve the expected result. Two users (B2, C2)
beginning the study with the ZoomFrame interface also considered triggering playback by
placing the hairlines on top of a song. Furthermore, subjects C1 and A2 tried dragging
the VolumeWidget onto songs or songs onto the widget for this purpose. This already
demonstrates that all users had at least initially difficulties to play music. However, all
subjects eventually discovered one of the two possibilities to trigger playback eventually.
Only one participant, C1, was able to find and understand the complete playback-system
on his own. All of the users who only discovered the tag-hold method wished for a way
to keep a song playing without having to keep the icon pressed; probands who found
only double-tapping did not explicitly require another playback-mode but appreciated it
as useful when it was shown to them. Only two users (A1, C1) discovered the possibility
to jump inside a song to a certain position. The VolumeWidget draw especially at the
beginning of the test the attention of all probands but Bl, and most of them guessed
either immediately (A1, B2, C2) or after few trials its function correctly. Thus, all users
— apart from B1, who showed no interest in the widget — were able to change the volume
and move the widget.

As for the discoverability of the techniques to create and handle focus areas, the re-
sults of the ZoomFrames and SoapSpots differed widely: All probands beginning with the
ZoomFrames understood immediately that they could manipulate the frame by dragging
the handle-spots — only subject B2 even tried touching the frame elsewhere. Also, all
users found and used the possibility to resize and reorient the ZoomkFrame. However, the
rotation was primarily used to avoid occluding the focus area with the arm while dragging
it. Subjects C2 and B2 expected the ZoomFrame to incorporate more functionality, espe-
cially regarding the hairlines in the center. Furthermore, all probands uncovered the way
to create and destroy frames. The way to create SoapSpots was also discovered rapidly
by all users, who began the study with this interaction mode, and their function was cor-
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rectly understood as providing a way to magnify icons. Also, all test persons expected
the SoapSpots to be movable and consecutively found this feature, too. The possibility to
combine two focus areas to one was found just as easily. However, none of the participants
discovered the possibility to scale the focus area or change its magnification by rotating it.

In the following stage, which was supposed to give information about the learnability of
the system, all previously undiscovered functions proved to be at least learnable: The test
persons had no difficulties to repeat the interactions demonstrated to them by the evaluator
and could effortlessly fulfill their tasks. Only the changing of a SoapSpots’ magnification
required a repetition of the explanation in one case (B1). Another observed difficulty
regards the double-tapping: While the subjects generally understood what was to do, they
often executed the taps in too close succession. Thus, the two interactions were interpreted
as one by the system, and the taps had no effect.

In the second zero-instruction-run all users who had used the SoapSpots before, had no
difficulties to find and use all features of the ZoomFrames. However, the hairlines in the
middle of the frame seemed to suggest additional functionality (C1, A2). The probands
who had already experience with the ZoomFrames were quickly able to create, move,
rescale and combine SoapSpots. The functionality to modify the magnification strength of
the focus area, however, was not found. Subject C2 at least discovered that the color of a
SoapSpot changes when the spot is rotated — but the effect of this color change was not
understood. Then, when this functionality was demonstrated for the following learnability
stage, all probands understood the feature and were able to fulfill the tasks given to them
without difficulties.

In the preference test, the SoapSpots were preferred by the majority; only two probands
(B1, C1) chose the ZoomFrames instead. Participant B1 commented on her choice and
stated that she felt a little more in control of the interface here. The plateau-size was
set by all users to the medium setting; thereby, subject Al would have liked another
level between the medium and the high setting. The distortion strength was set by four
participants to the medium value. The other two probands (B2, A1) preferred the weakest
and the strongest distortion, respectively. In both cases, the used SoapSpot was not set to
its original zoom level but adjusted to a higher or lower setting; this might have influenced
this choice.

The data-influence test showed that the manually refined placement indeed was more
enjoyed. Only one user (B2) preferred the original, unaltered version — interestingly out
of the same reason the other participants preferred the manual layout: In the automatic
layout, the icons were generally closer together and built rather tight clusters. So, the
primary advantage of the the manual refinement was that the icons were more spread out
— and not that it was semantically superior.

Multi-User Tasks
After the multi-user part of the study was started, the probands were first confronted with
the color-coding of the icons, which indicates ownership. The members of all teams had no
difficulties to understand this connection and to assign a color to its owner. The probands
were again advised that they may adjust the interface to their wishes as in the preference
test before. This offering was generally declined the teams; only one pair changed to the
ZoomFrame interaction after especially reminding them of this possibility during the test.
The first task-less minutes were spent by team A rather idly browsing the combined
collection. They compared their musical taste by inspecting the layout and could thus
rather quickly discover that they have little in common (Al: “we overlap only with the
Eurythmics”). Apart from that the team was symmetrically and casually browsing the
combined collections without much communication and without even playing music. Both
participants focused their browsing thereby on their own songs. This behavior was es-
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sentially mirrored by team B; they seemed even more cautious than team A and, after
they had found about the color-coding, were clearly waiting for instructions. Team C,
whose members are closer friends, used this phase primarily to explore the possibilities of
the interface together. Thus, they playfully tested how many SoapSpots the application
can handle at the same time, or they expressed their wish for a function to directly copy
the songs they like to their iPod. During this beginning phase music was played by both
participants, obviously as ambient sound, and without hesitating if the partner might not
like the choice. Then, they discovered that the density of icons of different colors gives
information about similarities and differences in their musical taste. Afterwards, for a few
minutes they explored collaboratively where their selections differ. During this exploration
their communication was mostly symmetrical and both probands interacted simultane-
ously. This was frequently interrupted if one of the users found something he wanted to
show to his partner. Also, these findings were accompanied by typical examples of music
talk (C1: “That song is cool”, C2: “Hey, this reminds me of [..]”, C1: “Eew, that’s Apres-Ski
music!”).

The behavior in all groups changed with the first task (“Please introduce your music
selection to your partner”): The communication and interaction was now clearly asymmetri-
cal with one person presenting and the other watching. The presenter usually accompanied
her explanations with the playback of songs which she deemed typical for a facet of their
taste. The contributions of the test person currently in the passive role was often limited
to short remarks to indicate that she is paying attention. Differences could be observed in
the approach the test-persons took when introducing their selection: While the majority
simply identified clusters on the interface and described the music located there, two users
(C2, B2) based their presentation on their estimations of their musical taste and tried to
find fitting examples afterwards. Subject Al confirmed at the beginning of this task that
one’s musical taste is something deeply personal (as stated in section 3.2.1) with the remark
“Present my selection? How embarrassing!”. Also, probands seemed concerned with choos-
ing the “right” specimen of an ingredient of their selection. Especially the presentations of
team A were frequently interrupted by phases where the presenter seemed just to browse
casually while both team members were obviously enjoying the currently playing music. At
the end they seemed to have completely forgotten their task and browsed simultaneously
again. Now, they were also beginning to engage in music talk. Their browsing behavior
changed for a minute to using the same SoapSpot and moving it in turns.

The next assignment (“play songs to your partner which are good for relaxing”) was
fulfilled by all teams rather fast and clearly asymmetrical; in the case of team B, subject B2
even stepped back from the table while B1 was choosing songs. Also, the probands played
only as many songs as they were asked to. The following task to close “educational gaps”
was conducted generally similar, albeit with more communication. This communication,
however, was essentially limited to the question if the partner was familiar with a certain
song and a short answer. Seemingly, only team B utilized the visualization and looked
especially in areas of clear domination of one color for the questioned “gaps”. The following
task (“find songs in your partner’s collection that you would also like to have”) proved
essentially already fulfilled for the teams A and B: These participants had previously
found songs of this kind and now had basically to rediscover them. The search for these
songs were conducted simultaneously but isolated in the case of team B. The members of
team A, on the other hand, mostly took turns in interacting but looked collaboratively
for the same song. Only team C executed this task independently of previous findings.
Interestingly, these participants did not browse simultaneously; instead, they took turns
in selecting songs from their own collection to recommend them to their partner.

Since all teams had previously shown that simultaneous interaction on the interface is
possible, the task to select songs for playlists for commuting or driving, was omitted during
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the conduction. So, the probands were then assigned the task to find and play songs,
whose title starts with a ’S’, as fast as they could. Here, the teams showed significantly
different characteristics. While in the teams B and C interferences, as e.g., the unintentional
combining of a focus area with the focus area of the opponent, occurred, they were mostly
accidents and the originator of the disturbance even apologized in some cases. Furthermore,
the members of these teams kept their focus areas at their minimum size — seemingly
to avoid collisions of this kind. Team A, on the other hand, abandoned this kind of
politeness and magnified their SoapSpots to the size they deemed helpful for their browsing
— regardless if this might disturb their opponent. Subject A2 even used his secondary hand
to create and move SoapSpots at random in the area his partner was currently browsing
just to disturb him — which caused understandably much complaining from his counterpart
(“Hey, put that circle away!”). The second race essentially mirrored the first. Seemingly,
the participants did not focus their search on the areas, where icons of both colors were
to be found, but essentially relied on the knowledge from earlier tasks since all teams had
previously identified common artists at one stage or another.

Questionnaire

The results of the first two parts of the questionnaire, which are concerned with demo-
graphics and music listening habits, can be found in Table 7.1. The ratings assigned to
the statements in the next part, “Experiences with AudioPhield”, revealed that one of
the central parts of AudioPhield’s design, the similarity depiction, found the approval of
the participants: Five of them agreed to the sentence “The similarity depiction seemed
sensible”, only subject C2 was undecided (rating 0). Similarly, the interface appeared to
the participants not as overly cluttered (four times “somewhat disagree”), and they ap-
preciated the overview of their partner’s taste it provided (three strong agreements). The
probands were generally content with the interaction techniques: Most participants stated
that they “somewhat agree” (value 1) to the sentence “I felt in control of the application”.
A similar topic is touched by the statement “AudioPhield reacted sometimes unexpected
to my inputs’. Here, only three participants “somewhat disagreed”, one felt undecided,
and two even somewhat agreed. The radial texts were seemingly not readable enough:
Four probands agreed to “I had problems with reading the radial texts”, one agreed even
strongly. However, despite this flaw, all participants enjoyed interacting with AudioPhield
generally. See Figure 7.3 for diagrams illustrating all these answers.

In the first open question in the last part of the questionnaire, users were asked to
specify their favorite features of AudioPhield. Their answers are very similar and generally
support our previous observations. Here, with four mentions, one of the most common
items was the generally appealing look, phrased in different forms like “the fancy graphics”
(A2) or “the general optical design” (B1). The general concept of a similarity-based visual-
ization found also the approval of four participants. Three probands praised the easy and
intuitive way to change the playback position inside the playing songs. Also three people
counted the fisheye view among their favorite features. The multi-touch interaction was
likewise mentioned three times. The VolumeWidget and the lines connecting songs of the
same album were named by one proband each.

Among AudioPhield’s biggest flaws appeared the bad readability of the radial texts
three times. Two users criticized that there is no function to jump directly to a known
song. Another user saw as a flaw that the interface gets cluttered to fast. Finally, a
way to create playlists was missed by yet another proband. The general improvement
ideas essentially contain the elimination of the previously listed flaws. The only item not
mentioned before is the wish for explicit labels on the field as a navigation aid.
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(a) general enjoyment (b) feeling of control  (c) unexpected reactions  (d) sensible similarity

B strongly disagree
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(e) read problems (f) feeling of clutter (g) collection overview (h) legend

Figure 7.3: Diagrams of the ratings to “Experiences with AudioPhield”. The ordering
mirrors the succession in the questionnaire (See Appendix C).

7.4.2 General Observations

This section enlists (in no particular order) all observations that can not be related to a
specific task but are of interest nevertheless.

Standing positions: During the single-user phase all probands stood as expected in the
center in front of the tabletop (as in Figure 7.2). In the multi-user setting, this was still the
most taken place. The other participant usually stood at another side of the table facing
the first user from the side. Standing side by side happened rarely, standing at opposite
sides of the table was not once observed. The participants seemed sometimes reluctant
to change their position and walk around the table — even if they had to reach out far
for some interactions. This, however was strongly correlated with their current task: In
situations were the users could expect to browse an area for a prolonged time, reaching
out far was observed rarely.

Behavior dominated by closeness of relation: This was already to be expected
from the knowledge presented in chapter 3.2.3. And indeed, team C, whose members were
already close friends before the study, appeared to be more at ease when browsing and
playing songs belonging to their partner’s selection. However, music talk could be observed
in the communication of all teams. It seemed thereby correlated to how comfortable the
probands felt in each other’s presence.

Learn effects: The ease of interaction of all probands showed generally significant im-
provement over time, especially regarding focus area handling. Unfortunately, the double-
taps showed less improvement and were even at the end of the study frequently attempted
unsuccessfully. Also, the participants learned the layout of the icons quickly and turned
in most cases towards the right interface area when they were looking for a certain song
or kind of music (e.g.: “I'm feeling like something more quiet now. That’s over there,
right?” (B2)). In the multi-user phase, probands also sometimes taught each other ways
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to interact better (e.g. “you need the make longer breaks between your taps” (B2)).

One-finger interaction: Although all users understood the capabilities of the tabletop
to track an virtually limitless amount of arbitrarily shaped blobs, all probands interacted
with the interface usually using only the index finger of their primary hand. Interactions
requiring two input-points were mostly executed using both hands instead of two fingers of
the same hand. When browsing areas of high icon density, the probands used sometimes
two-fingered interaction to increase the input-precision, especially when using ZoomFrames.

Icon centering: In the beginning of the study, most probands tried to center an icon
before interacting with it — an undertaking that is even with the plateau-enhanced fisheye
challenging. Later, this behavior was rarely found; instead, they moved their focus areas
just near enough to identify a song.

7.5 Identified Issues

The following is a list of all identified issues ordered roughly by their severity.

e Missing classic search: The need for a classic textual search arose in all observed
multi-user phases: For example, subject B2 was reminded by a playing piece of music
of another song, which possibly sounds very different and was therefore not located
in the immediate proximity. Since free associating is one of the core attributes of
music talk, this must be considered as a real shortcoming of the design.

e Unreadable Radial Texts: Apart from being pretty, the radial texts seemed to
have no positive attribute. They caused arguably as much head-tilting as the usual
straight lines of text, and were not nearly as readable. At the same time, these texts
arguably use up more space than ordinary texts. Furthermore, the long-term obser-
vations of Ryall et al. in [70] suggest that “users ha|ve| no trouble comprehending
small chunks of text that were improperly oriented”. One reason, why these texts
were integrated, was to reduce the feeling that areas “belong” to a participant. How-
ever, issues of this kind did not seem to harm the communication in the user study
in any way, and may thus be considered negligible.

e Artist data is more important than song titles: The probands virtually never
identified songs — or interacted with them — when only the song title was displayed.
Judging from their reactions, the title information in itself is not sufficient to identify
the song. Furthermore, for fast navigation mostly the artist data was of concern.
Thus, the artist should be displayed instead of the title around half-zoomed icons.

e Similarity needs transparency: Considering that there is no ground truth regard-
ing the similarity of pieces of music, this issue does not come as a surprise. While the
probands seemed to generally share the understanding of similarity with the evalua-
tor, who refined the layout manually, there were still surprises and dissents. These
could be eased and the interface at large could be better understandable if cues of
any kind were given that could explain the reasons behind the layout.

e Line trails: Connecting a song with every other track of the same album let to more
clutter and confusion than necessary. Since only two users selected whole albums for
the study, this problem stayed rather hidden. An elegant solution might be if the
songs of the same album were connected by a single “trail”, which could also indicate
the playing order of the songs on the record.
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e Line misconceptions: The lines connecting songs of the same album were fre-
quently mistaken for origin-lines, and vice versa. This was in part caused by the
poor color reproduction of the display, especially of narrow lines. But even if the
color-coding had been better readable, this problem might have surfaced. Better
distinguishability might be achieved by using curved or wider lines for the song con-
nections.

e Missing interaction-"catching”: The simple call-sequence of InputInterpreters
presented in chapter 6.2.2 contains no possibility to assign an input-ID to an interac-
tion object. Thus, it happened sometimes that a user wanted to move her ZoomFrame
and came near another ZoomFrame or the VolumeWidget. Then, she would suddenly
drag one of the latter — much to her surprise. With little work, this problem should
be easy to eleminate.

e Missing additional information: Currently, AudioPhield presents to a selected
song only which other songs belong to the same album — which album that is, is
not accessible. During the evaluation, the need for additional information like this
appeared only sporadically; in a real-world environment, however, there is arguably
more demand for additional data.

e Too small SoapSpots: The ring indicating the interaction-area of a SoapSpot was
often misunderstood as visual cue for input. Thus, probands, who wanted, e.g., to
resize the spot, tried to grab it on the ring — and created new focus areas instead.
So, either the visualization of the SoapSpots needs to be changed to indicate that it
may be touched anywhere or the interaction area should be enlarged to also contain
the ring completely.

e Unnecessary timeout: SoapSpots vanish if they are not interacted with after a
certain time. This (rather rare) event was in virtually all observed cases unwelcome
and considered annoying. Since unwanted SoapSpots can eagily be deleted by just
combining them, this function should be removed.

7.6 Discussion

In this final section of the evaluation chapter, we will explicitly analyze if the questions
asked in 7.1 were answered by the study, how these answers read and if they confirm our
expectations.

The first question was Does AudioPhield support music talk?. Since a fair amount of
music talk was observed, the answer here is that the system at least not frustrates it. A
comparative study would be necessary to confirm that AudioPhield supports music talk
better than classic systems — however, based on our own experiences, we feel optimistic
that our system would outmatch classic music playback software, even if it was also running
on a tabletop display. Nevertheless, a classic textual search should be somehow integrated
to support music talk even better.

The next question was Does the chosen visualization of perceived song similarity as
spatial proximity support casual browsing?. Here, the answer is a clear ’yes’: Most of the
browsing we observed appeared to be casual. Some probands (Al, Bl) even explicitly
remarked that interacting with AudioPhield was a great way to “durch die Sammlung
schmokern” what might be best translated as “to browse casually”. The similarity depiction
seemed especially appreciated if users were comparing their musical taste. Also, probands
relied on the similarity-based layout when looking for music of a special kind, e.g., during
the task “present your music collection” — as expected.
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The next two questions, Does the depiction of a whole music library at once provide
reasonable overview? and Do focus areas in the form of fisheye lenses enable accessing
details while preserving context?, can be answered together. The participants’ behavior
during the evaluation showed clearly that they were able to navigate the interface without
getting lost; at the same time, they were able to access more detailed information through
focus areas and had seemingly no trouble relating this detail-information to its surround-
ings. Additional indicators for a sufficient overview display were remarks like “one can
immediately see where we have the same musical taste” (Al) as well as the high agree-
ment the following statement in the questionnaire received: “I got a goof overview of my
partner’s music taste”. The depiction of detail-information may have suffered from the bad
readability of the radial texts but was otherwise little criticized. The fisheye-effect at least,
was mentioned several times as one of a subject’s favorite features of AudioPhield.

The study delivered no clear answer to the question “Is the information depiction rea-
sonable, i.e., is the most relevant information for browsing present and readable?”. This
is in part due to the fact that important information, like play-counts and recency of last
playback, could not be tested in this study since the information was simply not available.
The general predominant disagreement with the statement “The interface felt cluttered
and confusing” suggests that most probands were rather happy with the information vi-
sualization. One subject wished for additional information to selected songs. Apart from
that, the most relevant information seemed to be present, albeit its depiction could be
improved, e.g., by replacing the radial texts and displaying artist- before title-information.

Regarding “Are users able to understand and use the integrated interaction possibili-
ties?”, many indicators exist that this can be answered with a ’yes’. Many of the features
could be discovered by the probands on their own, and the undiscovered features were eas-
ily learned — albeit they were rarely used in some cases. For example, only two users (A2,
C2) made use of the possibility to modify the zoom-level of SoapSpots. Also, the double-
tapping should be revised to make it easier to trigger. Apart from these minor issues, the
interaction offered little reason for criticism. The results from the questionnaire regarding
this topic backs this statement up: The participants felt in control of the application most
of the time.

The next question “Can users interact simultaneously? Do they interfere with each
other?” can be answered similar positively. Simultaneous interaction occurred frequently,
interferences rarely by contrast. The fact that the user disturbed each other barely stems
to a good part of the fact that social protocols emerged in situations of conflict: E.g.,
when two users wanted to explore the same area of the interface, they sometimes shared
one focus area.

Considering the result from the previous questions, it is no surprise that we feel com-
fortable to answer the query “Are the interaction techniques suitable for a tabletop display?
Does the system exploit the table’s multi-touch capabilities?” again positively. The ob-
served high discoverability suggests that most interaction techniques seemed to have been
expected in a similar form, and thus suited a tabletop device. Considering that the par-
ticipants had little to no experience with tabletop interfaces, this statement deserves even
more recognition. AudioPhield does not exploit all possibilities of the used hardware — our
own design ideas prove that: Interaction techniques need not to be limited to small input
spots that are interpreted as points; approaches like the CookieDough interface show how
the tabletop could also interpret arbitrarily shaped interaction areas. On the other hand,
the participants even refrained largely from using more than their forefingers for input —
what again might stem from their intensive experiences with desktop PCs and little expe-
rience with tabletop devices. Further studies will have to show if future interfaces will still
be operated just by fingertips.

Regarding the last question, “Is the software a sufficient realization of the developed
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design”, we found little indicators that would suggest otherwise. Virtually all issues — apart
from the missing “input catching” — were design related. Also, the praise of the general
look of AudioPhield from participants is to a certain extent a praise of the implementation.

How valid are these findings? As explained in the “General Study Design” (page 76)
the conducted user study could not exactly reproduce the usage scenario for AudioPhield
— in part because of the simple fact that it is a user study, and the probands did not
meet in private surroundings for leisure activities (although they did seem to enjoy
themselves). Unobtrusive observations in real private surroundings should be more
conclusive. Furthermore, not all features of AudioPhield could be evaluated. The here
missing depiction of playback recencies and play-counts might further support music talk
and casual browsing — after all, this information relates pieces of music in a completely
different aspect. On the other hand, of course, the chosen visualizations for this data
might also harm the general readability of the interface. Nevertheless, the user study
delivered valuable insights and the participants’ relaxed behavior suggests that most of
the findings above would appear in more fitting surroundings, too.

Thus, to sum up this chapter, with AudioPhield we may not have achieved our goals

utterly but came at least close: AudioPhield indeed supports casual browsing of private
music collections on a tabletop display, even if there are still improvement potentials.
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8 Conclusion

To round off this thesis, this chapter will briefly summarize the previous explanations and
indicate possible directions for future work.

8.1 Summarization

This thesis presented AudioPhield, a system for collaborative casual browsing of music
collections on tabletop displays. In the introduction, we showed that listening to music is
a deeply emotional and inherently social process — which is not supported by usual software
for music playback. Starting from this initial motivation, we esteemed it plausible that this
condition correlates with the fact that usual software to handle music libraries is tailored to
desktop PCs, which in itself are inapt for simultaneous collaborative tasks. Consequently,
another computing principle was introduced, the direct-touch tabletop systems. These
seem better suited for our purpose. This motivated AudioPhield’s aim to run on such a
device.

The following chapter presented and discussed the work done by other researchers in
three disciples, which were identified as the core topics for the development of AudioPhield:
Information visualization, similarity-based music browsing and social browsing on tabletop
devices.

Chapter 3 examined how people usually consume music. It started by analyzing typ-
ical organizations of music collections. Then, the typically rather random, undirected
strategies of accessing private music libraries were discussed. Further, it was shown that
individuals as well as groups use music to define their identity. Then, the typical behavior
of acquaintances regarding choosing and listening to music was analyzed. This built also
the basis for the introduction of the term “music talk”, which describes an unstructured
process of casually discussing topics related to the playing music. The chapter was closed
with the topic of sharing music among friends. Here, an asymmetrical form of music talk
was diagnosed in the usual communication manners surrounding this task.

With the knowledge accumulated in the previous chapters, the targeted usage scenario
as well as the main issues for the design end development were defined in chapter 4:
AudioPhield should be used in private surroundings by people who know each other. As
central challenges were identified the relating of songs, the visualization of music libraries
and enabling simultaneous interaction on a tabletop display.

Chapter 5 then illustrates the process of designing an interface that is supposed to
achieve the just defined goals. We deducted from the music consumption chapter that
the perceived similarity between pieces of music is one of the most important features for
casual browsing. Therefore, it was decided that these relations should build the core of
the visualizations in AudioPhield. The data necessary for this purpose should be acquired
through algorithms that automatically estimate meaningful features of each song. Because
spatial proximity was revealed to be the most significant way to visualize information,
songs should be depicted as icons in such a way that the perceived similarity determines
the distance between the icons. After discussing different approaches, it emerged that
self-organizing maps are well suited for the task of building a similarity-based layout.
As next step, the visualization of music libraries was discussed. Since the display was
required to deliver overview information and detail information, graphical fisheye lenses
became part of the design. It followed a determination of what should be encoded in the
design of the icons. To show the necessary information to identify a piece of music — the
name of the artist and the title —, we devised radial texts to avoid the orientation-issue
of tabletop interfaces. Furthermore, the color of an icon should indicate the music library
to which the represented song belongs, opacity should encode the recency of a the last
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playback of a piece of music, and rotation speed should correlate with its rating. The rest
of the chapter was concerned with interaction techniques. Three different systems to create
and manipulate fisheye lenses were presented: The rather classic ZoomFrames with two
handle-spots, the SoapSpots that allowed to create new focus areas by a single tap, and the
unimplemented CookieDough, which essentially simulates a directly manipulatable viscous
dough. Afterwards, ways to play and pause music were defined. There are two possibilities.
Firstly, an icon may be tapped twice to start usual playback. Secondly, the user can keep
an icon pressed for a short time; then the playback would start and continue for as long
as the pressing is not released. This was followed by a description of how in-song position
seeking is realized: After the tap-hold interaction moving the interacting finger around the
icon sets the playback position. The introduction of the VolumeWidget to control playback
volume concluded the chapter.

The following chapter “Implementation” started with a description of the used hard-
ware. The section afterwards presented the general software design in terms of used tech-
nologies and architecture. Then selected implementation aspects were discussed. These
were the usage of folksonomy data instead of content-based algorithms, the peculiarities
of the SOM, a force-based algorithm to improve the layout, and the indirect way to realize
fisheye lenses by utilizing a distortion grid.

Finally, in chapter 7 we presented an explorative user study conducted to verify the
previous design decisions. The study was split into three parts. First, probands were in-
teracting solitary with the interface. At the beginning of this phase, they were not given
any instructions to test the discoverability of the interface. Later tasks were tailored to
certain aspects of AudioPhield. Then, the participants interacted with the interface as
pairs. After another instruction-less period, they were asked to perform tasks forcing them
to interact with each other and with the system in certain ways, e.g., to test how well
simultaneous interactions are possible. Finally, probands were asked to fill in question-
naires. The following analysis of the results revealed a few design issues, but showed also
that with AudioPhield the goal to create a system to support casual collaborative browsing
was essentially accomplished.

8.2 Future Work

There are some obvious ways how AudioPhield could be developed further. Removing the
issues enlisted in chapter 7.5, for example, would be a good start. Also, better ways to
collect meaningful data for songs to achieve better placements would be another. While
here many interesting matters are hidden (e.g., providing AudioPhield with rather classic
searches might be a poster use-case for query-by-humming systems), we nevertheless want
to use these final lines to hint the untapped potential of the ideas behind AudioPhield.
The usage scenario for this thesis was intentionally chosen quite narrow. Otherwise, the
implementation would have come never to an end, and we would still be discussing ideas.
One should not assume that the concept is limited to this scenario, though. A similar table
as the one used here may, for example, be erected inside a record store. Then, customers
could simply feed their favorite song to the system and see immediately what similar songs
are available. This could even be enhanced with data from other music enthusiasts all
around the world: Instead of playback recency, the system could visualize, e.g., how often
the song was purchased in the last hours. Perhaps it would be even more interesting for
customers if they could connect their iPod directly to the system and purchase songs by
a simple dragging gesture. A system similar to AudioPhield might also be of high value
for single-user environments: Consider yourself coming home from a day that has been a
little too long, and you desire the right tunes to help you relax. You could scroll through
your lists of albums until you find something that fits; or you could just draw a circle on
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the screen around the area that fits your mood. Of course, these scenarios make rather
different demands on the system than the one we considered here — but the general concept
of AudioPhield would in our opinion be up to it.
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\AudioPhield
Contains the final version of AudioPhield as source code.

\footage
Parts of the video material recorded during the user study

\references

Contains all freely available papers and webpages of the ¢

references’’ list

\thesis
\PDF
Contains the thesis as .pdf
\LaTeX
Contains the LaTeX files of the thesis.
Note: README.txt explains how the PDF can be created from the LaTeX files.
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APT ... Application Programming Interface
bpm ................. beats per minute

DOI ................. Degree of interest

Lo - S Latin: exempli gratia: for example
etal. ...l Latin: et alis: and others

f and the following page
.o and the following pages

FTIR ................ Frustrated Total Internal Reflection
GUIL ...l Graphical User Interface

e Latin: id est: that is

InfoViz .............. Information Visualization
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KISS ..., Acronym: Keep it simple, stupid
MIR .......... ... ... Music Information Retrieval

P o page

PCM ................ Pulse-Code-Modulation

SOM ................ Self-Organizing Map

STEFT ............... Short Time Fourier Transformation
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97



LIST OF ABBREVIATIONS LIST OF ABBREVIATIONS

98



LIST OF FIGURES

LIST OF FIGURES

List of Figures

1.1
2.1
2.2
5.1
5.2
5.3
0.4
9.5
0.6
5.7
0.8
5.9
5.10
5.11
5.12
5.13
5.14
9.15
5.16
0.17
5.18
9.19
5.20
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
7.1
7.2
7.3

AudioPhield screenshot . . . . . . ..o
FilmFinder screenshot . . . . . . . .. .. . .. L L
Fisheye-transformed photo. . . . . . .. . ... .o o000
Effectivity-ranking for display dimensions . . . . . . .. .. ... ... ...
Comparison between the visualizations Starfield and SOM . . . . . ... ..
Screenshot of a prototype with a central fisheye lens. . . . . . . .. ... ..
Examples of fisheye distortions . . . . . . .. .. ... ... .. .. ... ..
Nlustration of an interface with fisheye views . . . . . .. . . ... ... ..
[lustration of an interface with visually emphasized fisheye views . . . . . .
A field with two music libraries . . . . . . . . .. ... L.
Examples of icon-visualizations . . . . . . . . .. . ... ... .. ... ..
Movement of a ZoomFrame. . . . . . .. ... Lo
Size-zoom coupling . . . . . ..o
Rotation and resizing of a ZoomFrame. . . . . . . . . . ... ... ... ..
Creation and deletion of a ZoomFrame . . . . . . . . .. .. .. ... ....
Creation and movement of a SoapSpot. . . . . . . . . . ... ...
Rotation and resizing of a SoapSpot. . . . . . . . .. ... ..
Combination of two SoapSpots. . . . . . . . . ... o
Nlustration of the CookieDough interface. . . . . .. . ... ... ... ...
Simple playback . . . . . ..o
Scan-Playback . . . . . . . . ..
In-song seeking . . . . . . ..o
Volume manipulation. . . . . . . ... oL
Frustrated Total Internal Reflection . . . . . . . . ... ... ... ... ..
Measures and photo of the used tabletop device. . . . . .. ... ... ...
Image processing in Touchlib. . . . . .. ... ... o000
AudioPhield’s architecture: Class-diagram. . . . . . . .. .. ... ... ...
Screenshot of the DataHandler. . . . . . . .. ... ... ... ... .....
Nlustration of the encoding robustness of selected features. . . . . . . .. ..
Screenshot of the music annotation tool. . . . . . . .. ... ... ... ...
Two exemplary beat histograms. . . . . . .. .. .. . L0,
Decision tree of tag extractors. . . . . . . . . . ... ...
Hlustration of the SOM learning process . . . . . .. . .. . ... ... ...
Screenshot of the SOMpregantor. . . . . . . . . . . ... ... ... ... .
Nlustration of the forces exerted on two items. . . . . . . .. . ... ... ..
Hlustration of the effect of the spring-algorithm. . . . . . . . . ... ... ..
Transformation and magnification function of the default fishey view. . . . .
Transformation and magnification function of fishey view with plateau. . . .
MNlustration of low-resolution distortion grid. . . . . . . .. .. ... ... ..
Nlustration of a distortion grid with low attenuation. . . . . . . .. ... ..
Photo of the experimental setup. . . . . . . . ... ... ... ... ...,
A proband tries stacking ZoomFrames to achieve music playback. . . . . . .
Diagrams of the ratings to “Experiences with AudioPhield”. . . . . .. . ..

41
42

99



LIST OF FIGURES LIST OF FIGURES

100



LIST OF TABLES LIST OF TABLES

List of Tables

3.1 Typical organization of private music collections . . . . . . . . . .. ... .. 14
5.1 Characteristics of various InfoViz channels . . . . . . ... .. ... .. .. 24
5.2 Separability of some display dimension pairs. . . . . . ... ... ... ... 25
7.1 Characteristics of the probands. . . . . . . .. .. .. ... ... ... .. .. 78

101



LIST OF TABLES LIST OF TABLES

102



REFERENCES REFERENCES

References

[1]

[10]

[11]

[12]

Christopher Ahlberg and Ben Shneiderman. Visual information seeking: tight cou-
pling of dynamic query filters with starfield displays. In CHI '94: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 313-317, New
York, NY, USA, 1994. ACM.

Christopher Ahlberg, Ben Shneiderman, and Christopher Williamson. Dynamic
queries: database searching by direct manipulation. In CHI ’92: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 669670, New
York, NY, USA, 1992. ACM.

Jean-Julien Aucouturier and Francois Pachet. Improving Timbre Similarity : How
high’s the sky? Journal of Negative Results in Speech and Audio Sciences, 1(1),
2004.

Arianna Bassoli, Julian Moore, and Stefan Agamanolis. tuna: Socialising music shar-
ing on the move. In Kenton O’Hara and Barry Brown, editors, Consuming Music
Together: Social and Collaborative Aspects of Music Consumption Technologies, vol-
ume 35 of Computer Supported Cooperative Work, chapter 8, pages 151-172. Springer,
Dordrecht, The Netherlands, 2006.

Hrvoje Benko, Andrew Wilson, and Patrick Baudisch. Precise selection techniques
for multi-touch screens. In CHI, pages 1263-1272, Montréal, Québec, Canada, April
2006.

Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling: Theory and
Applications. Springer, 2005.

Barry Brown and Abigail Sellen. Sharing and listening to music. In Kenton O’Hara
and Barry Brown, editors, Consuming Music Together: Social and Collaborative
Aspects of Music Consumption Technologies, volume 35 of Computer Supported Co-
operative Work, chapter 3, pages 37-56. Springer, Dordrecht, The Netherlands, 2006.

Thorsten Buering, Jens Gerken, and Harald Reiterer. User interaction with scat-
terplots on small screens - a comparative evaluation of geometric-semantic zoom
and fisheye distortion. IEEFE Transactions on Visualization and Computer Graphics,
12(5):829-836, 2006.

Michael Bull. Investigating the culture of mobile listening: From walkman to ipod.
In Kenton O’Hara and Barry Brown, editors, Consuming Music Together: Social and
Collaborative Aspects of Music Consumption Technologies, volume 35 of Computer
Supported Cooperative Work, chapter 7, pages 131-149. Springer, Dordrecht, The
Netherlands, 2006.

William Buxton. A three-state model of graphical input. In INTERACT ’90: Pro-
ceedings of the IFIP T(C18 Third Interational Conference on Human-Computer In-
teraction, pages 449-456, Amsterdam, The Netherlands, The Netherlands, 1990.
North-Holland Publishing Co.

Kim Campbell. The death of the album? The Christian Science Monitor, (14),
November 2003.

Stuart Card, Jock Mackinlay, and Ben Shneiderman. Using vision to think, pages
579-581. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

103



REFERENCES REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

104

Sheelagh Carpendale. A framework for elastic presentation space. PhD thesis, Simon
Fraser University, Burnaby, BC, Canada, Canada, 1999.

Sheelagh Carpendale, David Cowperthwaite, and Frank Fracchia. Bringing the ad-
vantages of 3D distortion viewing into focus. In Proc. IEEE Symp. Information
Visualization, InfoVis, pages 17-20, 1998.

Patrick Chiu, Jeffrey Huang, Maribeth Back, Nicholas Diakopoulos, John Doherty,
Wolf Polak, and Xiaohua Sun. mTable: Browsing Photos and Videos on a Tabletop
System. In ACM International Conference on Multimedia 08, October 2008.

William Cleveland and Robert McGill. Graphical perception: Theory, experimen-
tation and application to the development of graphical methods. Journal of the
American Statistical Association, (79):531-554, September 1984.

Andrew Crossen and Jay Budzik. Promoting social interaction in public spaces: The
flytrap active environment. In Kenton O’Hara and Barry Brown, editors, Consuming
Music Together: Social and Collaborative Aspects of Music Consumption Technolo-
gies, volume 35 of Computer Supported Cooperative Work, chapter 6, pages 111-128.
Springer, Dordrecht, The Netherlands, 2006.

Sally Cunningham, David Bainbridge, and Dana McKay. Finding new music : a
diary study of everyday encounters with novel songs. In ISMIR 07, 8th Interna-
tional Conference on Music Information Retrieval, pages 83-88, Vienna, Austria,
September 2007.

Sally Cunningham, Stephen Downie, and David Bainbridge. "the pain, the pain":
Modelling music information behavior and the songs we hate. In ISMIR 2005, 6th
International Conference on Music Information Retrieval, pages 474-477, London,
UK, September 2005.

Sally Cunningham, Steve Jones, and Matt Jones. Organizing digital music for use:
an examination of personal music collections. In ISMIR 2004, 5th International Con-
ference on Music Information Retrieval, pages 447-455, Barcelona, Spain, October
2004.

Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American Society
for Information Science, 41:391-407, 1990.

Asaf Degani, Michael Shafto, and Alex Kirlik. Modes in human-machine systems:
Review, classification, and application. International Journal of Aviation Psychology,
9(2):125-138, 1999.

Tia DeNora. Music and emotion in real time. In Kenton O’Hara and Barry Brown,
editors, Consuming Music Together: Social and Collaborative Aspects of Music Con-
sumption Technologies, volume 35 of Computer Supported Cooperative Work, chap-
ter 2, pages 19-33. Springer, Dordrecht, The Netherlands, 2006.

Elena Deza and Michel-Marie Deza. Dictionary of Distances. Elsevier, 2006.

Paul Dietz and Darren Leigh. Diamondtouch: a multi-user touch technology. In UIST
01: Proceedings of the 14th annual ACM symposium on User interface software and
technology, pages 219-226, New York, NY, USA, 2001. ACM.



REFERENCES REFERENCES

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Stephen Downie. Music information retrieval. Annual Review of Information Science
and Technology 37, pages 295-340, 2003.

Daniel Ellis, Brian Whitman, Adam Berenzweig, and Steve Lawrence. The quest
for ground truth in musical artist similarity. In Proceedings of 3rd International
Symposium on Music Information Retrieval (ISMIR 2002), pages 170-177, Paris,
France, October 2002.

Bernhard Feiten and Stefan Giinzel. Automatic indexing of a sound database using
self-organizing neural nets. Computer Music Journal, 18(3):53-65, Fall 1994.

Clifton Forlines and Chia Shen. Dtlens: multi-user tabletop spatial data exploration.
In UIST ’05: Proceedings of the 18th annual ACM symposium on User interface
software and technology, pages 119-122, New York, NY, USA, 2005. ACM.

David Frohlich, Allan Kuchinsky, Celine Pering, Abbe Don, and Steven Ariss. Re-
quirements for photoware. In CSCW “02: Proceedings of the 2002 ACM conference
on Computer supported cooperative work, pages 166—-175, New York, NY, USA, 2002.
ACM.

George Furnas. Generalized Fisheye Views. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI'86), pages 16-23, New York, 1986. ACM
Press.

Jefferson Han. Low-cost multi-touch sensing through frustrated total internal reflec-
tion. In UIST ’05: Proceedings of the 18th annual ACM symposium on User interface
software and technology, pages 115118, New York, NY, USA, 2005. ACM Press.

Mark Hancock, Sheelagh Carpendale, Frederic Vernier, Daniel Wigdor, and Chia
Shen. Rotation and translation mechanisms for tabletop interaction. In TABLETOP
06: Proceedings of the First IEEE International Workshop on Horizontal Interac-
tive Human-Computer Systems, pages 79-88, Washington, DC, USA, 2006. [EEE
Computer Society.

Kate Hevner. Experimental studies of the elements of expression in music. American
Journal of Psychology, 48:246-268, 1936.

Otmar Hilliges, Dominikus Baur, and Andreas Butz. Photohelix: Browsing, Sorting
and Sharing Digital Photo Collections. In To appear in Proceedings of the 2nd IEEE
Tabletop Workshop, Newport, RI, USA, October 2007.

Otmar Hilliges, Phillipp Holzer, Rene Kliiber, and Andreas Butz. Audioradar: A
metaphorical visualization for the navigation of large music collections. In Proceedings

of the International Symposium on Smart Graphics 2006, Vancouver Canada, July
2006.

Uta Hinrichs, Sheelagh Carpendale, and Stacey Scott. Evaluating the effects of
fluid interface components on tabletop collaboration. In AVI ’06: Proceedings of the
working conference on Advanced visual interfaces, pages 27-34, 2006.

Stephen Hitchner, Jennifer Murdoch, and George Tzanetakis. Music browsing using
a tabletop display. In Proceedings of ISMIR 2007, pages 175-176, Vienna, Austria,
September 2007.

Peter Hlavac. Innovative user interfaces for accessing music on mobile devices. Mas-
ter’s thesis, Vienna University of Technology, Austria, March 2007.

105



REFERENCES REFERENCES

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

106

Lars Holmquist. Focus+context visualization with flip zooming and the zoom
browser. In CHI '97: CHI 97 extended abstracts on Human factors in computing
systems, pages 263-264, New York, NY, USA, 1997. ACM.

Andreas Hotho, Robert Jédschke, Christoph Schmitz, and Gerd Stumme. Information
Retrieval in Folksonomies: Search and Ranking. In Proceedings of the 3rd European
Semantic Web Conference, LNCS, pages 411-426, Budva, Montenegro, June 2006.
Springer.

Maria Hakansson, Mattias Jacobsson, and Lars Holmquist. Designing a mobile music
sharing system based on emergent properties. In Proceedings of the 2005 Interna-
tional Conference on Active Media Technology (AMT 2005), May 2005.

Samuel Kaski. Data Ezploration Using Self-Organizing Maps. Acta polytechnica
scandinavica ma 82, Neural Networks Research Center, Helsinki University of Tech-
nology, Espoo, Finland, 1997.

Peter Knees, Markus Schedl, Tim Pohle, and Gerhard Widmer. An innovative three-
dimensional user interface for exploring music collections enriched. In MULTIMEDIA

06: Proceedings of the 14th annual ACM international conference on Multimedia,
pages 17-24, New York, NY, USA, 2006. ACM.

Kurt Koffka. Principles of Gestalt Psychology. Lund Humphries, London, UK, 1935.

Teuvo Kohonen. Construction of similarity diagrams for phonemes by a self-
organizing algorithm. Technical report, Helsinki University of Technology, Espoo,
Finland, 1981. Report TKK-F-A463.

Teuvo Kohonen. Self-Organizing Maps. Springer, 3 edition, January 2001.

Myron Krueger, Thomas Gionfriddo, and Katrin Hinrichsen. VIDEOPLACE — an
artificial reality. SIGCHI Bulletin, 16(4):35—40, 1985.

Russell Kruger, Sheelagh Carpendale, Stacey Scott, and Saul Greenberg. How peo-
ple use orientation on tables: comprehension, coordination and communication. In
GROUP ’08: Proceedings of the 2003 international ACM SIGGROUP conference on
Supporting group work, pages 369-378, New York, NY, USA, 2003. ACM.

Paul Lamere. Search inside the music: Using signal processing, machine learning,
and 3d visualizations to discover new music. Slides at 2007 JavaOne Conference,
2007.

Paul Lamere and Douglas Eck. Using 3d visualizations to explore and discover music.
Whitepaper, Sun Labs, Sun Microsystems, Inc., June 2007.

John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In CHI ’95: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 401-408, New
York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

Butler Lampson. Hints for computer system design. In SOSP ’83: Proceedings of
the ninth ACM symposium on Operating systems principles, pages 33-48, New York,
NY, USA, 1983. ACM.

Ying Leung and Mark Apperley. A review and taxonomy of distortion-oriented pre-
sentation techniques. ACM Transactions on Computer-Human Interaction, 1(2):126—
160, 1994.



REFERENCES REFERENCES

[53]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Jock Mackinlay. Automating the design of graphical presentations of relational in-
formation. ACM Trans. Graph., 5(2):110-141, 1986.

Ali Mazalek, Matthew Reynolds, and Glorianna Davenport. Tviews: An extensible
architecture for multiuser digital media tables. IEEE Computer Graphics Applica-
tions, 26(5):47-55, 2006.

Daniel McEnnis and Sally Cunningham. Sociology and music recommendation sys-
tems. In Proceedings of 8th International Conference on Music Information Retrieval

(ISMIR ’07), Vienna, Austria, 2007.

Fabian Morchen, Alfred Ultsch, Mario Nocker, and Christian Stamm. Databionic
Visualization of Music Collections According to Perceptual Distance. In ISMIR

2005, 6th International Conference on Music Information Retrieval, pages 396-403,
London, UK, September 2005.

Kenton O’Hara and Barry Brown. Consuming music together: Introduction and
overview. In Kenton O’Hara and Barry Brown, editors, Consuming Music Together:
Social and Collaborative Aspects of Music Consumption Technologies, volume 35 of
Computer Supported Cooperative Work, chapter 1, pages 3—-17. Springer, Dordrecht,
The Netherlands, 2006.

Kenton O’Hara, Matthew Lipson, Axel Unger, Huw Jeffries, Marcel Jansen, and
Peter Macer. Distributing the process of music choice in public spaces. In Kenton
O’Hara and Barry Brown, editors, Consuming Music Together: Social and Collabora-
tive Aspects of Music Consumption Technologies, volume 35 of Computer Supported
Cooperative Work, chapter 5, pages 87-109. Springer, Dordrecht, The Netherlands,
2006.

Nicola Orio. Music retrieval: A tutorial and review. Foundations and Trends in
Information Retrieval, 1(1):1-90, 2006.

Frangois Pachet, Amaury La Burthe, Aymeric Zils, and Jean-Julien Aucouturier.
Popular music access: the sony music browser. Journal of the American Society for

Information Science, 55(12):1037-1044, 2004.

Elias Pampalk. Islands of music: Analysis, organization, and visualization of music
archives. Master’s thesis, TU Wien, 2001.

Joseph Paradiso. Tracking contact and free gesture across large interactive surfaces.
Commun. ACM, 46(7):62-69, 2003.

Karl Pearson. On lines and planes of closest fit to systems of points in space. The Lon-
don, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 6(2):559-
572, 1901.

Tim Pohle, Elias Pampalk, and Gerhard Widmer. FEvaluation of frequently used
audio features for classification of music into perceptual categories. In Proceedings
of the Fourth International Workshop on Content-Based Multimedia Indexing, 2005.

Jun Rekimoto. Smartskin: an infrastructure for freehand manipulation on interactive

surfaces. In CHI ’02: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 113-120, New York, NY, USA, 2002. ACM.

107



REFERENCES REFERENCES

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

|76]

[77]

78]

[79]

[80]

[81]

108

British Music Rights and the University of Hertfordshire. Music experience and be-
haviour in young people — mainfindings and conlusions. Technical report, University
of Hertfordshire, June 2008.

Yvonne Rogers and Sian Lindley. Collaborating around large interactive displays:
which way is best to meet? Interacting with Computers, 16(6):1133-1152, 2004.

Kathy Ryall, Clifton Forlines, Chia Shen, Meredith Morris, and Katherine Everitt.
Experiences with and observations of direct-touch tabletops. In TABLETOP °06:
Proceedings of the First IEEE International Workshop on Horizontal Interactive
Human-Computer Systems, pages 89-96, Washington, DC, USA, 2006. IEEE Com-
puter Society.

Hans Sagan. Space-Filling Curves. Springer-Verlag, Berlin, Germany, 1994.

J. Alfredo Sanchez, Guadalupe Quintana, and Antonio Razo. Staf-fish:
Starfields+fisheye visualization and its application to federated digital libraries. In

Workshop on Perspectives, Challenges and Opportunities for Human-Computer In-
teraction in Latin America (CLIHC07), Rio de Janeiro, Brazil, September 2007.

Manojit Sarkar and Marc Brown. Graphical fisheye views of graphs. In CHI ’92:
Proceedings of the SIGCHI conference on Human factors in computing systems, pages
83-91, New York, NY, USA, 1992. ACM.

Eric Scheirer. Music-Listening Systems. PhD thesis, MIT Media Lab, 2000.

Matthias Schicker. Audiophield: A framework for music similarity analysis. Project
Thesis, May 2007.

Stacey Scott, Karen Grant, and Regan Mandryk. System guidelines for co-located,
collaborative work on a tabletop display. In ECSCW’03: Proceedings of the eighth
European Conference on Computer Supported Cooperative Work, pages 159-178, Nor-
well, MA, USA, 2003. Kluwer Academic Publishers.

Chia Shen, Neal Lesh, Baback Moghaddam, Paul Beardsley, and Ryan Bardsley.
Personal digital historian: user interface design. In CHI ’01: CHI 01 extended
abstracts on Human factors in computing systems, pages 29-30, 2001.

Ben Shneiderman. The eyes have it: a task by data type taxonomy for information
visualizations. Visual Languages, 1996. Proceedings., IEEE Symposium on, pages
336-343, 1996.

Robert Spence and Mark Apperley. Database navigation: An office environment for
the professional. Behaviour and Information Technology, 1(1):43-54, 1980.

lan Stavness, Jennifer Gluck, Leah Vilhan, and Sidney Fels. The musictable: A
map-based ubiquitous system for social interaction with a digital music collection.
In International Conference on Entertainment Computing (ICEC05), pages 291-302.
Springer, 2005.

Anthony Tang, Melanie Tory, Barry Po, Petra Neumann, and Sheelagh Carpendale.
Collaborative coupling over tabletop displays. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages 1181-1190, New York,
NY, USA, 2006. ACM.



REFERENCES REFERENCES

[82]

[83]

[34]

[85]

[36]

[87]

[38]

[39]

[90]

[91]

[92]

(93]

[94]

Aaron Toney and Bruce Thomas. Considering Reach in Tangible and Table Top
Design. In TABLETOP ’06: Proceedings of the First IEEE International Workshop
on Horizontal Interactive Human-Computer Systems, pages 57-58, Washington, DC,
USA, 2006. IEEE Computer Society.

Marc Torrens, Patrick Hertzog, and Josep Arcos. Visualizing and Exploring Personal
Music Libraries. In ISMIR 2004, 5th International Conference on Music Information
Retrieval, pages 409-415, Barcelona, Spain, October 2004.

Edward Tse, Saul Greenberg, Chia Shen, and Clifton Forlines. Multimodal multi-
player tabletop gaming. Comput. Entertain., 5(2):12, 2007.

George Tzanetakis and Perry Cook. MARSYAS: A Framework for Audio Analysis.
Organized Sound, Cambridge University Press 4(3), 2000.

George Tzanetakis and Perry Cook. Marsyas3d: A prototype audio browser-editor
using a large scale immersive visual and audio display. In J. Hiipakka, N. Zacharov,
and T. Takala, editors, Proceedings of the Tth International Conference on Auditory
Display (ICAD2001), pages 250-254, Espoo, Finland, 2001. Helsinki University of
Technology.

George Tzanetakis and Perry Cook. Musical genre classification of audio signals. In
IEEE Transactions on Speech and Audio Processing, volume 10, pages 293-302, july
2002.

George Tzanetakis, Georg Essl, and Perry Cook. Human perception and computer
extraction of musical beat strength. In Proceedings of the 5th International Confer-
ence on Digital Audio Effects (DAFz-02), pages 257-261, september 2002.

Fabio Vignoli. Digital music interaction concepts: A user study. In ISMIR 2004, 5th
International Conference on Music Information Retrieval, pages 415-421, Barcelona,
Spain, October 2004.

Fabio Vignoli, Rob van Gulik, and Huub van de Wetering. Mapping music in the
palm of your hand, explore and discover your collection. In ISMIR 2004, 5th In-
ternational Conference on Music Information Retrieval, pages 409-415, Barcelona,
Spain, October 2004.

Amy Voida, Rebecca Grinter, and Nicholas Ducheneaut. Social practices around
itunes. In Kenton O’Hara and Barry Brown, editors, Consuming Music Together:
Social and Collaborative Aspects of Music Consumption Technologies, volume 35 of
Computer Supported Cooperative Work, chapter 4, pages 57-83. Springer, Dordrecht,
The Netherlands, 2006.

Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004.

Pierre Wellner. The digitaldesk calculator: Tactile manipulation on a desk top dis-
play. In In Proceedings of UIST 92, the ACM Symposium on User Interface Software
and Technology., pages 27-33, November 1991.

lan Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2 edition, 2005.

109



REFERENCES REFERENCES

110



REFERENCES WEB REFERENCES

Web References

[@1] Roberto Amorium and Sebastian Mares. LAME MP3 Encoder. Website. http:
//lame.sourceforge.net/index.php, 10 September 2008.

@2] Apple Computer Inc. iTunes Music player. Website. http://www.apple.com/
p
itunes.

[@4] Helsinki University of Technology - Laboratory of Computer and Information Sci-
ence. Self-Organizing Map research. Website. http://www.cis.hut.fi/research/
som-research/, 13 August 2008.

|@5] Paul Lamere. Help bring Search Inside the Music to the world. Website. http://
blogs.sun.com/plamere/entry/help_bring_search_inside_the, 15 August 2008.

[@6] Paul Lamere. More fun statistics about last.fm tags. Website. http://blogs.sun.
com/plamere/entry/more_fun_statistics_about_last, 10 September 2008.

[@7] Last.fm, Ltd. last.fm — The Social Music Revolution. Website. http://www.last.fm,
19 August 2008.

@8] Last.fm, Ltd. last.fm — The Social Music Revolution — API. Website. http://www.
last.fm/api, 10 September 2008.

[@9] Last.fm, Ltd. last.fm’s Playground — Most Unwanted Scrobbles. Website. http:
//playground.last.fm/unwanted, 20 August 2008.

[@12] Microsoft Corporation. Microsoft Surface. Website. http://www.microsoft.com/
surface/index.html, 15 September 2008.

[@13] Microsoft Corporation. Visual Studio 2008. Website. http://www.microsoft.com/
emea/msdn/visualstudio/default.aspx, 8 September 2008.

[@14] Microsoft Corporation. XNA Game Studio 2.0. Website. http://msdn.microsoft.
com/en-us/library/bb200104.aspx, 8 September 2008.

@15] Microsoft Corporation. Xna.com. Website. http://xna.com/, 8 September 2008.

[

|@17] Music Genome Project. Pandora Internet Radio. http://www.pandora.com.

|@18] MusiclP Corporation. MusicIP: Your World. Amplified. http://www.musicip.com.
[

@19| MuzicForums.com. Muzic Forums — The Music Community. Website. http://www.
muzicforums.com/, 20 August 2008.

[@20] MySpace.com. MySpace FORUMS — Music. Website. http://forums.myspace.
com/s/4.aspx?fuseaction=forums.viewsubforum, 20 August 2008.

|[@21] Natural User Interface Group (~ NUI Group). Touchlib. Website. http://www.
nuigroup.com/touchlib/, 8 September 2008.

[@22] Martin Nilsson. id3v2.3.0 - ID3.org. Website. http://www.1d3.0org/id3v2.3.0, 19
August 2008.

[@23] Nullsoft. Winamp homepage. Website. http://www.winamp. com.

[@24] Frank Patalong. Musik-download-zédhlung: Einfalltor fiir Chart-Manipulationen?
Website. http://www.spiegel.de/netzwelt/web/0,1518,538302,00.html, 19 Au-
gust 2008.

111


http://lame.sourceforge.net/index.php
http://lame.sourceforge.net/index.php
http://www.apple.com/itunes
http://www.apple.com/itunes
http://www.cis.hut.fi/research/som-research/
http://www.cis.hut.fi/research/som-research/
http://blogs.sun.com/plamere/entry/help_bring_search_inside_the
http://blogs.sun.com/plamere/entry/help_bring_search_inside_the
http://blogs.sun.com/plamere/entry/more_fun_statistics_about_last
http://blogs.sun.com/plamere/entry/more_fun_statistics_about_last
http://www.last.fm
http://www.last.fm/api
http://www.last.fm/api
http://playground.last.fm/unwanted
http://playground.last.fm/unwanted
http://www.microsoft.com/surface/index.html
http://www.microsoft.com/surface/index.html
http://www.microsoft.com/emea/msdn/visualstudio/default.aspx
http://www.microsoft.com/emea/msdn/visualstudio/default.aspx
http://msdn.microsoft.com/en-us/library/bb200104.aspx
http://msdn.microsoft.com/en-us/library/bb200104.aspx
http://xna.com/
http://www.pandora.com
http://www.musicip.com
http://www.muzicforums.com/
http://www.muzicforums.com/
http://forums.myspace.com/s/4.aspx?fuseaction=forums.viewsubforum
http://forums.myspace.com/s/4.aspx?fuseaction=forums.viewsubforum
http://www.nuigroup.com/touchlib/
http://www.nuigroup.com/touchlib/
http://www.id3.org/id3v2.3.0
http://www.winamp.com
http://www.spiegel.de/netzwelt/web/0,1518,538302,00.html

WEB REFERENCES WEB REFERENCES

|@25] Dirk Peitz. Musikmesse Popkomm: Der Download kann dem Album nix. Website.
http://www.sueddeutsche.de/kultur/artikel/470/86384/, 19 August 2008.

[@26] Claudio Pinhanez. The Everywhere Displays Projector. Website. http://www.
research.ibm.com/ed/, 15 September 2008.

[@27] Ben Shneiderman. Dynamic queries, starfield displays, and the path to Spotfire.
Website. http://www.cs.umd.edu/hcil/spotfire/, 12 August 2008.

[@28] SMART Technologies ULC. SMART Technologies, industry leader in interactive
whiteboard technology, the SMART Board. Website. http://smarttech.com/, 8
September 2008.

[@29] STIBCO Software Inc. Customers of TIBVO Spotfire Enterprise Analytics Products
- TIBCO Spotfire. Website. http://spotfire.tibco.com/customers/, 12 August
2008.

[@30] Stefan Toengi. AudioGenie Start. Website. http://www.audiogenie.de/en/index.
htm, 8 September 2008.

[@31] undseen developments. Un4seen developments - 2midi / bass / mid2xm / mo3 /
xm-exe / xmplay. Website. http://www.undseen.com/, 8 September 2008.

[@32] Wikipedia, the free encyclopedia. Collaborative Filtering. Website. http://en.
wikipedia.org/wiki/Collaborative_filtering, 20 August 2008.

[@33] Xiph.org. Xiph.org. Website. http://www.xiph.org/vorbis/, 10 September 2008.

112


http://www.sueddeutsche.de/kultur/artikel/470/86384/
http://www.research.ibm.com/ed/
http://www.research.ibm.com/ed/
http://www.cs.umd.edu/hcil/spotfire/
http://smarttech.com/
http://spotfire.tibco.com/customers/
http://www.audiogenie.de/en/index.htm
http://www.audiogenie.de/en/index.htm
http://www.un4seen.com/
http://en.wikipedia.org/wiki/Collaborative_filtering
http://en.wikipedia.org/wiki/Collaborative_filtering
http://www.xiph.org/vorbis/

Appendix A

webtag extractors.xml

Appendix A: webtag extractors.xml

<?7xml version="1.0" encoding="utf-8"7>

<!-- This file is used to configure the tags for the web_extractors in AudioPhield.
<!-- It’s xml, so fiddle around as you please - but don’t brake the scheme. -->
<!-- use signifances between 1 and 10. -->

<!-- These will get scaled to actual significances inside AudioPhield -->

<web_extractor_list>

<t--

genres -->

<web_extractor significance="10">
<contains>
<word>pop</word>
<word>schlager</word>
<match>powerpop</match>
<word>disco</word>
</contains>

<contras>
<any>metal</any>
<any>alternative</any>
<word>house</word>
<word>techno</word>
<word>trance</word>
<word>punk</word>

</contras>

</web_extractor>

<web_extractor significance="10">
<contains>
<match>rock</match>
<any>country</any>
<match>hard rock</match>
<match>classic rock</match>
</contains>

<contras>
<word>pop</word>
<word>soul</word>
<match>hip hop</match>
<match>hip-hop</match>
<match>hiphop</match>

</contras>

</web_extractor>

<web_extractor significance="10">
<contains>
<any>alternative</any>
<any>indie</any>
<any>grunge</any>
</contains>

<contras>
<word>disco</word>
<match>hip hop</match>
<match>hip-hop</match>
<match>hip hip</match>
<any>electro</any>
<word>house</word>
<match>dance</match>
<word>eurodance</word>

</contras>

</web_extractor>

<web_extractor significance="10">
<contains>
<word>soul</word>

-->
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71
72
73
74
75
76
7
78

80
81
82
83
84
85

87

88

&9

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

<word>funk</word>
<any>blues</any>
<any>jazz</any>

</contains>

<contras>

<word>disco</word>
<match>rock</match>
<any>electro</any>
<word>house</word>
<any>dance</any>

</contras>
</web_extractor>

<web_extractor significance="10">
<contains>

<any>metal</any>
<word>grindcore</word>

</contains>

<contras>

<word>pop</word>
<word>disco</word>
<match>rock</match>
<any>electro</any>
<word>house</word>
<any>dance</any>

</contras>
</web_extractor>

<web_extractor significance="10">
<contains>

<match>hip hop</match>
<match>hip-hop</match>
<match>hip hip</match>
<word>hiphop</word>
<word>rap</word>
<word>rnb</word>

<match>drum and bass</match>
<match>drum n bass</match>
<match>drum &amp; bass</match>
</contains>

<contras>

<word>disco</word>
<match>rock</match>
<any>electro</any>
<word>house</word>
<any>dance</any>

</contras>
</web_extractor>

<web_extractor significance="10">
<contains>

<any>electro</any>
<word>house</word>
<match>dance</match>
<word>eurodance</word>
<any>techno</any>
<word>rave</word>
<word>trance</word>

</contains>

<contras>

<match>rock</match>
<any>metal</any>
<match>hip hop</match>
<match>hip-hop</match>

</contras>
</web_extractor>

<web_extractor significance="10">
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143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

<t

<contains>
<word>noise</word>
<word>experimental</word>
<match>dark wave</match>
<word>darkwave</word>
<word>dark-wave</word>
<word>ebm</word>
<match>electronic body music</match>
<any>industrial</any>

</contains>

<contras>
<word>soul</word>
<match>pop</match>
<any>metal</any>
<match>hip hop</match>
<match>hip-hop</match>

</contras>

</web_extractor>

<web_extractor significance="10">

<contains>
<any>folk</any>
<match>singer-songwriter</match>
<word>reggae</word>
<word>ska</word>
<word>dub</word>

</contains>

<contras>
<word>pop</word>
<any>metal</any>
<match>hip hop</match>
<match>hip-hop</match>
</contras>
</web_extractor>

<web_extractor significance="10">
<contains>
<any>punk</any>
<match>new wave</match>
<any>gothic</any>
</contains>

<contras>
<word>pop</word>
<any>disco</any>
<match>metal</match>
<match>reggae</match>
<word>soul</word>

</contras>

</web_extractor>

<web_extractor significance="10">
<contains>
<word>classical</word>
<word>oldies</word>
</contains>
</web_extractor>

instruments / singers / sound

<web_extractor significance="4">
<contains>
<word>male</word>
</contains>

<contras>
<any>female</any>
</contras>
</web_extractor>
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215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
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244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
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116

<web_extractor significance="4">
<contains>
<any>female</any>
</contains>

<contras>
<word>male</word>
</contras>
</web_extractor>

<web_extractor significance="6">
<contains>
<word>instrumental</word>
</contains>

<contras>
<any>male</any>
<any>female</any>
</contras>
</web_extractor>

<web_extractor significance="7">
<contains>
<word>minimal</word>
</contains>
</web_extractor>

<web_extractor significance="8">
<contains>
<word>acoustic</word>
<word>guitar</word>
</contains>
</web_extractor>

<web_extractor significance="8">
<contains>
<any>piano</any>
</contains>
</web_extractor>

mood #EHHEHHHHEHEREEHEHERHERERE

<web_extractor significance="6">
<contains>
<word>downtempo</word>
<any>chillout</any>
<any>lounge</any>
<word>atmospheric</word>
</contains>

<contras>
<word>uptempo</word>
<word>fast</word>
</contras>
</web_extractor>

<web_extractor significance="6">
<contains>
<word>uptempo</word>
<match>up tempo</match>
<word>fast</word>
</contains>

<contras>
<word>downtempo</word>
<any>lounge</any>
<any>chillout</any>
</contras>
</web_extractor>
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287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

<t--

<web_extractor significance="3">
<contains>
<word>breakbeat</word>
</contains>

<contras>
<word>melancholy</word>
<word>ambient</word>
<word>sad</word>
</contras>
</web_extractor>

<web_extractor significance="5">
<contains>
<word>mellow</word>
<word>ambient</word>
</contains>
</web_extractor>

<web_extractor significance="5">
<contains>
<word>playful</word>
<word>party</word>
<word>harsh</word>
<any>loud</any>
<any>fun</any>
</contains>

<contras>
<word>melancholy</word>
<word>sad</word>
<word>wistful</word>
<word>autumnal</word>
<match>fado</match>

</contras>

</web_extractor>

<web_extractor significance="5">
<contains>
<word>melancholy</word>
<word>sad</word>
<word>wistful</word>
<word>autumnal</word>
<match>fado</match>
</contains>

<contras>
<word>playful</word>
<word>party</word>
<word>harsh</word>
<any>loud</any>
<any>fun</any>

</contras>

</web_extractor>

age -->

<web_extractor significance="3">

<contains>
<any>50s</any>
<any>40s</any>
<any>30s</any>
<any>20s</any>

</contains>

<contras>
<any>60s</any>
<any>70s</any>
<any>80s</any>
<any>90s</any>
<any>00s</any>

</contras>
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3959 </web_extractor>

360

361 <web_extractor significance="3">
362 <contains>

363 <any>60s</any>
364 </contains>

365 <contras>

366 <any>70s</any>
367 <any>80s</any>
368 <any>90s</any>
369 <any>00s</any>
370 </contras>

371 </web_extractor>

372

373 <web_extractor significance="3">
374 <contains>

375 <any>70s</any>
376 </contains>

377 <contras>

378 <any>60s</any>
379 <any>80s</any>
380 <any>90s</any>
381 <any>00s</any>
382 </contras>

383 </web_extractor>

384

385 <web_extractor significance="3">
386 <contains>

387 <any>80s</any>
388 </contains>

389 <contras>

390 <any>60s</any>
391 <any>70s</any>
392 <any>90s</any>
393 <any>00s</any>
394 </contras>

395 </web_extractor>

396

397 <web_extractor significance="3">
398 <contains>

399 <any>90s</any>
400 </contains>

401 <contras>

402 <any>60s</any>
403 <any>70s</any>
404 <any>80s</any>
405 </contras>

406 </web_extractor>

407

408 <web_extractor significance="3">
409 <contains>

410 <any>00s</any>
411 </contains>

412 <contras>

413 <any>60s</any>
414 <any>70s</any>
415 <any>80s</any>
416 <any>90s</any>
417 </contras>

418 </web_extractor>

419

420 <web_extractor significance="3">
421 <contains>

422 <word>classic</word>
423 </contains>

424 </web_extractor>

425

426 <V-- HEHEHEEHEHEEE R Trom SHHHHEHEHEHEEHEEHEHEEEE - >
427

428 <web_extractor significance="3">
429 <contains>

430 <word>USA</word>
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431 <any>america</any>
432 <word>canada</word>
433 <word>canadian</word>
434 </contains>

435

436 <contras>

437 <word>british</word>
438 <word>uk</word>

439 <any>german</any>
440 <any>deutsch</any>
441 </contras>

442 </web_extractor>

443

444 <web_extractor significance="3">
445 <contains>

446 <word>british</word>
447 <word>uk</word>

448 <word>london</word>
449 <match>britpop</match>
450 </contains>

451

452 <contras>

453 <word>USA</word>

454 <any>america</any>
455 <word>canada</word>
456 <any>german</any>
457 <any>deutsch</any>
458 </contras>

459 </web_extractor>

460

461 <web_extractor significance="3">
462 <contains>

463 <any>german</any>
464 <any>deutsch</any>
465 </contains>

466

467 <contras>

468 <word>british</word>
469 <word>uk</word>

470 <word>USA</word>

471 <any>america</any>
472 <word>canada</word>
473 </contras>

474 </web_extractor>

475

476 <web_extractor significance="4">
477 <contains>

478 <word>anime</word>
479 <word>japanese</word>
480 <match>j-pop</match>
481 <match>j-rock</match>
482 <match>jrock</match>
483 <match>j-indie</match>
484 <match>j-indies</match>
485 </contains>

486

487 <contras>

488 <word>british</word>
489 <word>uk</word>

490 <word>USA</word>

491 <any>america</any>
492 <word>german</word>
493 </contras>

494 </web_extractor>

495

496 <web_extractor significance="2">
497 <contains>

498 <word>french</word>
499 <word>france</word>
500 <any>francais</any>
501 <word>chanson</word>
502 </contains>
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503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
5928
529
530
531
532
933
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
951
552
953
554
555
556
557
358
559
560
561
562
563
564
565
566
967
568
569
570
571

<contras>
<word>british</word>
<word>uk</word>
<word>USA</word>
<any>america</any>
<word>german</word>

</contras>

</web_extractor>

<web_extractor significance="1">
<contains>
<word>polish</word>
<word>poland</word>
<any>polski</any>
</contains>
</web_extractor>

<web_extractor significance="3">
<contains>

<word>scandinavian</word>

<word>finnish</word>
<word>finland</word>
<word>swedish</word>
<word>sweden</word>
<word>oslo</word>
</contains>
</web_extractor>

<web_extractor significance="3">
<contains>
<any>latin</any>
<word>cuban</word>
<word>mexican</word>
</contains>
</web_extractor>

<web_extractor significance="3">
<contains>
<match>world</match>
<any>africa</any>
<any>arabic</any>
</contains>
</web_extractor>

<web_extractor significance="2">
<contains>
<any>russia</any>
<any>ruski</any>
</contains>
</web_extractor>

<t-- theme

<web_extractor significance="1">
<contains>
<word>christian</word>
<word>worship</word>
</contains>
</web_extractor>

<web_extractor significance="1">
<contains>
<any>politic</any>
</contains>
</web_extractor>

</web_extractor_list>
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Appendix B: Task Schedule

The following is the original task schedule used for the user study (kept in German). The
task succession depicted here was modified for every other participant so that the two tests
concerned with the Soap-interface came before the ZoomFrame-interface.

AudioPhield: Evaluation

Die Evaluation von AudioPhield zielt auf eine Probandengruppe von sechs Personen ab. Jeder
Proband soll vor der Evaluation einen Ausschnitt aus seiner Musiksammlung dem Evaluator
zukommen lassen; dieser Ausschnitt sollte zwischen 100 und 120 Titel, die dem Probanden
wohlbekannt sind und seinen Musikgeschmack moglichst in ganzer Breite widerspiegeln, umfassen.
Die Probanden nehmen als Paare an der Evaluation teil.

Bei jeder Evaluationssitzung filmt eine Kamera gleichzeitig die Probanden und ihre Interationen mit
der Applikation. Ein abschlieRender Kurzfragebogen soll nicht implizit erfassbare Fragestellungen
beantworten und verifizieren.

l. Teil: Einzelevaluation

Die Probanden sollen zuerst einzeln mit der Applikation interagieren, da wichige Fragestellungen so
besser untersucht werden kénnen. Die Einzalphasen sollen maximal 20 Minuten dauern. Danach geht
die Evaluation sofort in die Untersuchung von Paarsituationen Uber.

Fragestellung: LDiscoverability” der ZoomFrame-Oberflache: Inwieweit kann die

Oberflache intuitiv verstanden werden? Welche Merkmale und
Moglichkeiten erschliessen sich dem Nutzer sofort, welche sind
unauffindbar?

Situation: Beim Eintreten des Probanden lduft AudioPhield bereits und ist mit
den Musikdaten des Probanden, die nach dem wohl besten
verfugbaren Verfahren platziert wurden (manuell), bestiickt. Die
Oberflache befindet sich im ZoomFrame-Modus; ein ZoomFrame
befindet sich bereits auf dem Phield.

Durchfiihrung/Aufgaben: ,0-instruction-run“: Die Probanden werden gebeten, die Applikation
auszuprobieren. Es werden weder Aufgaben noch Hilfestellungen
angeboten.

Zu beobachten: Da dies die erste Interaktion mit AudioPhield ist, konnen Features aus

zwei getrennten Gebieten entdeckt werden:

i) Generelle Features
- lcons reprasentieren Musikstlcke
- Songs sind nach Ahnlichkeit angeordnet
- TapHold: Anspielen
- DoubleTap: Abspielen
- TapHold/DoubleTap: Pausieren des gespielten Songs
- Hold-Seek: Spulen im Lied
- Anspiel-Interaktionen nur im Zoombereich
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- Linien verbinden Songs des selben Albums
- VolumeController: Lautstarkeregelung
- VolumeController: Verschiebbarkeit
ii) ZoomFrame Features
- Frame beinhaltet FishEye
- Frames kénnen verschoben werden
- Frames kdnnen skaliert / rotiert werden
- Frameerzeugung Uber ,Ziehen” aus den Ecken
- Frame l6schbar durch minimieren
- Text zu Songs im Fadenkreuz im Rahmen

Zeitrahmen: etwa 4 Minuten

Fragestellung: Erlernbarkeit der ZoomFrame-Oberflache: Inwieweit kann die

Oberflache iiberhaupt verstanden werden? Welche Features bleibn
auch nach kurzen Erklarungen unverstanden?

Situation: Nachem die Zero-Instruction-Phase abgelaufen ist, werden alle nicht
gefundenen features kurz erklart. Danach wird der Proband gebeten,
ein paar einfache Aufgaben zu erledigen, die abpriifen, ob die erklarten
features verstanden werden konnten.

Durchfiihrung/Aufgaben: Es werden nur die Aufgaben gestellt, deren Gegenstand erklart werden
musste. Aufgaben (parallel zu Checkliste oben):

- Zeige zwei Musikstlicke, die einander dhneln
- Spiele ein Musikstiick ab, pausiere es und setze das Abspielen fort.
Spiel ein anderes Stiick kurz an (ohne es ganz abzuspielen)

|u

- Suche die Positionen ,halb” und , drei-viertel” in einem Song

- Schalte die Wiedergabe auf stumm, verschiebe das VolumeWidget
und erhohe die Lautstdrke wieder

- [Zeige zwei Songs des selben Albums... nicht immer gegeben,
moglicherwese sehr zeitaufwandig, da fiir die Trail-Anzeige Songs
angespielt werden missen]

- Zeige Text zu einem Song an (-> Verschiebbarkeit, Textanzeige,
FishEye). Drehe den Text fiir maximale Lesbarkeit (-> Rotation)

- Lass einen ZoomFrame ein ganzes Genre umfassen (Skalierbarkeit)

- Erzeuge und l6sche zwei ZoomFrames

Zu beobachten: War der Proband dazu in der Lage die Aufgabe auszufiihren? Waren
erneute / weitere Erklarungen notwendig?

Zeitrahmen: bis 3 Minuten
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Fragestellung:

Situation:

Durchfiihrung/Aufgaben:

Zu beobachten:

Zeitrahmen:

,Discoverability” der Soap-Oberfliche. Wie oben.

Das Phield wird in den Soap-Modus versetzt. Sonstiger Zustand bleibt.
,Zero-instruction”. Wie oben.
Auffindbare Features:

- Berihren der Oberflache erzeugt ZoomArea
- ZoomArea enthalt FishEye

- ZoomAreas sind verschiebbar

- ZoomAreas sind skalierbar

- Zoom der ZoomAreas ist einstellbar

- ZoomAreas konnen vereinigt werden

- Roter Ring gibt Interaktionsbereich an

- ZoomAreas verschwinden automatisch

etwa 2 Minuten

Fragestellung:

Situation:

Durchfithrung/Aufgaben:

Zu beobachten:

Zeitrahmen:

Erlernbarkeit der Soap-Oberflache: Wie oben

Wie oben. Kurze Erkldrungen zu nicht gefundenen Features

Es werden nur die Aufgaben gestellt, deren Gegenstand erklart werden
musste. Aufgaben (parallel zu Checkliste oben):

- Erzeuge eine ZoomArea

- Zeige Artist und Titel zu einem Song an (ZoomArea ==
FishEye)

- Erzeuge eine zweite ZoomArea und vereinige beide durch
Verschieben

- Lass eine ZoomArea mindestens 50 Songs umfassen (->
Skalierbarkeit)

- Stelle den Zoom auf ,,minima

|u |u

und ,maxima
- Entferne alle ZoomAreas

War der Proband dazu in der Lage die Aufgabe auszufiihren? Waren
erneute / weitere Erklarungen notwendig?

bis 3 Minuten
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Fragestellung: Préferenztest: Welche von den verschiedenen Einstellungen halt der
Proband fiir am sinnvollsten?

Situation: Phield im Zustand wie nach dem letzten Test. Dem Proband wird
erklart, wie verschiedene Einstellungen geandert werden kénnen. Mit
diesem Wissen soll der Proband die Einstellung finden, die ihm am
sinnvollsten scheint. Der Proband wird gebeten, seine Kriterien und
Gedanken zu artikulieren.

Durchfithrung/Aufgaben: Zu verandern:

- Umschalten: ZoomFrame / Soap-Oberflache

- PlateaugroRe (3 Werte: Nicht vorhanden, normal, groR)

- Verschiebungsintensitat (3 Werte: schwach, normal, stark)
- Linien zu OriginalPosition an-/abschalten

Zu beobachten: Einstellungen und Kriterien fiir diese.
Zeitrahmen: bis 4 Minuten
Fragestellung: Dateneinflusstest: Inwieweit beeinflusst die Gute der

Ahnlichkeitsanalyse (und damit der Platzierung) die Erfahrungen?

Situation: Dem Probanden werden in zufélliger Reihenfolge Phields vorgefiihrt,
die mit Hilfe von MIR-Daten oder tag-Daten bestiickt wurden.

Durchfithrung/Aufgaben: Der Proband soll jeweils nacheinander 3 moglichst ahnliche Songs
verschiedener Kinstler anspielen.

Zu beobachten: Dauer und offensichtliche Schwierigkeit der Aufgabenerfiillung.

Zeitrahmen: bis 2 Minuten
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Il Teil: Paarevaluation

Nachdem der zweite Proband den Einzelteil durchlaufen hat, kommt der erste Proband hinzu. Alle

Aufgabenstellungen werden von nun an dem Paar gestellt.

Fragestellung:

Situation:

Durchfiihrung/Aufgaben:

Zu beobachten:

Zeitrahmen:

Generelles Verhalten: Wie verhalten sich die Probanden, wenn sie

gemeinsam mit AudioPhield interagieren sollen?

Das Phield enthalt nun die Songs von beiden Probanden.
Platzierungsgrundlage ist wieder die beste verfiigbare
Ahnlichkeitsanalyse (wohl manuelle Platzierung).

In den ersten 5 Minuten wird keine Aufgabe gestellt (auRer dem
generellen ,Bitte interagiert mit der Applikation”). Danach werden
Aufgaben gestellt, die die Kommunikation Gber Musik férdern sollen

- Bitte macht Euch mit der Sammlung Eures Partners
vertraut

- Stell Deinem Partner Deinen Musikgeschmack / Deine
Musiksammlung vor

- Spiel Deinem Gegenuber 3 Songs vor, zu denen man gut
tanzen oder entspannen kann

- Finde die 3 Songs, die dem Patner am peinlichsten sein
sollten

- Spiel dem Partner 2 Songs vor, die dieser nicht kennt, aber
unbedingt gehort haben muss (,,Bildungsliicken®)

- Suche in der Auswahl Deines Partners 2 Songs, die Du auch
gerne hattest

Generelles Verhalten. Werden mehr eigene oder fremde Songs
gespielt? Wie haufig werden Songs ganz gespielt, wie haufig
abgebrochen? Priferiertes Interface.

bis 15 Minuten

Fragestellung:

Situation:

Durchfithrung/Aufgaben:

Konfliktpotenzial: Inwieweit behindert oder fordert das Interface die
simultane, gemeinsame Interaktion mit der Applikation?

Phield wie zuvor. Es werden kurze Aufgaben gestellt, die simultane
Interaktion, z.T. im selben Areal des Phields erfordern.

Simultanaufgaben:

- Stellt Euch jeweils eine Playlist von Songs auf dem Phield
auf, die lhr zum Joggen/Autofahren/in der U-Bahn/...
gerne horen wirdet

125



Task Schedule APPENDIX B

- Spielt als erster 5 Songs an, deren Interpret mit ,,S“ beginnt
Konfliktaufgaben:

- (Findet und spielt Songs, die Ihr gemeinsam habt) wenn
vorhanden

- Findet Kinstler, die in beiden Kollektionen mehr als einmal
vertreten sind

Zu beobachten: Auftretende Konflikte und deren Losung. Wird Gberhaupt gleichzeitig
interagiert? Entwickeln sich soziale Protokolle?

Zeitrahmen: bis 5 Minuten
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Appendix C: Questionnaire

AudioPhield User Study: Questionnaire

Demographics

First name (necessary to link video and questionnaire):

Age: Gender:

Technical experience: little [2—3}—{4]—5] alot
Experience with TableTop interfaces: little [2—3}—{4]—5] alot

Music listening habits

Please base your answers only on your collection of digital music.

Size of the private music collection: songs
Music listening habits: songs per week

How do you primarily select the songs to listen to:
|:| | create playlists explicitly
|:| I play one specific album at a time (linear or random)
D I have my entire collection on ,,shuffle”
|:| | have a strongly reduced subset of my collection on ,shuffle”

D | use ,,smart playlist“-systems (e.g., pandora, last.fm, ...)

|:| Other:
Do you use music recommendation systems (i.e., pandora, last.fm, musiclP, ...)?
|:| Yes |:| No

If ,Yes”, to what extent do these systems motivate your music selection?
% of the songs | listen to were selected automatically

Experiences with AudioPhield

Please rate to what extent you agree with the following statements:

disagree

Q
oq
=
o
o

| generally enjoyed interacting with AudioPhield

| felt in control of the application

AudioPhield reacted sometimes unexpected to my inputs 2

AREVE

[ ][]l ]

The similarity depiction seemed sensible

FEEEE
R

!

I had problems to read the radial texts

%]
=]
-]
I

The interface felt cluttered and confusing

(%]
(=]
][]
(-]
[~]

| got a good overview of my partner’s music taste
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Experiences with AudioPhield

Please add here all praise, criticism and ideas below.

Your favorite features of AudioPhield:

AudioPhield’s higgest flaws:

General improvement ideas:
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